Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. (1/277)

Water-soluble quantum dot-organic dye nanocomposites have been prepared via electrostatic interaction. We used CdTe quantum dots with diameters up to 3.4 nm, 2-aminoethanethiol as a stabilizer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as an organic dye. The photophysical properties of the nanocomposite have been investigated. The fluorescence of the parent CdTe quantum dot is largely suppressed. Instead, indirect excitation of the TSPP moiety leads to production of singlet oxygen with a quantum yield of 0.43. The nanocomposite is sufficiently photostable for biological applications.  (+info)

A mesoporous pattern created by nature in spicules from Thetya aurantium sponge. (2/277)

Siliceous or carbonate spicules provide support and defense to marine sponges. The inorganic envelope usually embodies a protein core. Our SAXS study of the siliceous spicules from the demosponge Thetya aurantium proves the very ordered structure assumed by the protein core inside the spicules. Indeed, not only the very sharp diffraction spots already found in previous studies on spicules from different sponges are confirmed, but also the 11 sharp spots in the diffraction pattern recorded after thermal treatment at 250 degrees C can only be interpreted in terms of a natural nanocomposite mesostructure with an hexagonal lattice formed by a three-dimensional periodic arrangement of silica cages in which the protein units act as structure directing agent.  (+info)

Preparation and properties of chitosan/calcium phosphate composites for bone repair. (3/277)

Chitosan/calcium phosphate (CaP) composites composed of bioactive calcium phosphate and flexible chitosan were made by a simple mixing-and-heating method. Phase composition, morphology, and mechanical properties--including in-air and in vitro fatigue behavior - were evaluated. Experimental results showed that the chitosan matrix did not affect the crystalline phase of CaP. However, the content of CaP additive affected the three-point bending strength of the composites. A CaP/ chitosan ratio of 5% by mass to volume in the composite achieved the significantly highest bending strength of 45.7 MPa. Stability of chitosan/CaP hybrid composites was apparently affected by in vitro cyclic loading. Nonetheless, when applied a loading stress of 11.4 MPa, the sample containing the optimal 5 mass/vol% CaP lasted 40 minutes in in vitro fatigue test until failure occurred. It was thus concluded that hybrid biocomposites with initial high strength might be a potential implant candidate for bone defect repair.  (+info)

Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. (4/277)

A novel scaffold material based on an alginate hydrogel which contained carbon nanotubes (CNTs) was prepared, and its mechanical property and biocompatibility evaluated. Soluble CNTs were prepared with acid treatment and dispersed in sodium alginate solution as a cross-linker. After which, the mechanical property (elastic deformation), saline sorption, histological reaction, and cell viability of the resultant nanocomposite gel (CNT-Alg gel) were evaluated. The CNT-Alg gel showed faster gelling and higher mechanical strength than the conventional alginate gel. Saline sorption amount of freeze-dried CNT-Alg gel was equal to that of the alginate gel. In terms of histological evaluation and cell viability assay, CNT-Alg gel exhibited a mild inflammatory response and non-cytotoxicity. These results thus suggested that CNT-Alg gel could be useful as a scaffold material in tissue engineering with the sidewalls of CNTs acting as active sites for chemical functionalization.  (+info)

Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. (5/277)

OBJECTIVES: Nanoparticles of dicalcium phosphate anhydrous (DCPA) were synthesized in our laboratory for the first time and incorporated into a dental resin. Our goal was to develop a mechanically strong dental composite that has Ca and PO(4) ion release to combat tooth caries, and to investigate the effects of whisker reinforcement, DCPA particle size and silanization. METHODS: DCPA nanoparticles and two larger DCPA particles were used with nano-silica-fused whiskers as fillers in a resin matrix. Composite mechanical properties were measured via three-point flexure, and the release of Ca and PO(4) ions were measured versus time. RESULTS: Using DCPA nanoparticles with a diameter of 112nm, the composite at a DCPA:whisker mass ratio of 1:1 had a flexural strength (mean+/-S.D.; n=5) of (112+/-17)MPa, not significantly different from (112+/-14)MPa of a commercial non-releasing composite; both were higher than (29+/-7)MPa for the composite at DCPA:whisker of 1:0 (p<0.05). The composite with DCPA particle size of 112nm released Ca to a concentration of 0.85mmol/L and PO(4) of 3.48mmol/L, higher than Ca of 0.67mmol/L and PO(4) of 1.11mmol/L using DCPA with 12microm particle size (p<0.05). Silanization of DCPA increased the composite strength at DCPA:whisker of 1:0 compared to that without silanization, but decreased the Ca and PO(4) release (p<0.05). Increasing the DCPA particle surface area increased the Ca and PO(4) release. SIGNIFICANCE: Decreasing the DCPA particle size increased the Ca and PO(4) release; whisker reinforcement increased the composite strength by two- to three-fold. The nano DCPA-whisker composites, with high strength and Ca and PO(4) release, may provide the needed, unique combination of stress-bearing and caries-inhibiting capabilities.  (+info)

Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. (6/277)

Fabricating the structures similar to dental enamel through the in vitro preparation method is of great interest in the fields of dentistry and material sciences. Developing enamel is composed of calcium phosphate mineral, water, and enamel matrix proteins, mainly amelogenins. To prepare a material mimicking such composition a novel approach of simultaneously assembling amelogenin and calcium phosphate precipitates by electrolytic deposition (ELD) was established. It was found that recombinant full-length amelogenin (rP172) self-assembled into nanochain structures during ELD (following increase in solution pH), and had significant effect on the induction of the parallel bundles of calcium phosphate nanocrystals, grown on semiconductive silicon wafer surface. When a truncated amelogenin (rP148) was used; no nanochain assembly was observed, neither parallel bundles were formed. The coating obtained in the presence of rP172 had improved elastic modulus and hardness when compared to the coating incorporated with rP148. Our data suggest that the formation of organized bundles in amelogenin-apatite composites is mainly driven by amelogenin nanochain assembly and highlights the potential of such composite for future application as dental restorative materials.  (+info)

Effects of calcium phosphate nanoparticles on Ca-PO4 composite. (7/277)

Nano-particles of dicalcium phosphate anhydrous (DCPA) were synthesized for the first time. The objectives of this study were to incorporate DCPA nano-particles into resin for Ca-PO(4) release to combat dental caries, and to investigate the filler level effects. Nano-DCPA and nano-silica-fused silicon nitride whiskers at a 1:1 ratio were used at filler mass fractions of 0-75%. The flexural strengths in MPa (mean +/- SD; n = 6) of DCPA-whisker composites ranged from (106 +/- 39) at 0% fillers to (114 +/- 23) at 75% fillers, similar to (112 +/- 22) of a non-releasing composite (TPH) (p > 0.1). The composite with 75% fillers in a NaCl solution (133 mmol/L, pH = 7.4, 37 degrees C) yielded a Ca concentration of (0.65 +/- 0.02) mmol/L and PO(4) of (2.29 +/- 0.07) mmol/L. Relationships were established between ion-release and DCPA volume fraction V(DCPA): Ca = 4.46 V(DCPA)(1.6,) and = 66.9 V(DCPA)(2.6). Nano-DCPA-whisker PO(4) composites had high strength and released high levels of Ca-PO(4) requisite for remineralization. These new nano-composites could provide the needed combination of stress-bearing and caries-inhibiting capabilities.  (+info)

Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. (8/277)

OBJECTIVE: To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). METHODS: Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. RESULTS: Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. SIGNIFICANCE: Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.  (+info)