The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. (1/85)

The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.  (+info)

VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. (2/85)

Apical proteins are sorted and delivered from the trans-Golgi network to the plasma membrane by a mechanism involving sphingolipid-cholesterol rafts. In this paper, we report the effects of changing the levels of VIP17/MAL, a tetraspan membrane protein localized to post-Golgi transport containers and the apical cell surface in MDCK cells. Overexpression of VIP17/MAL disturbed the morphology of the MDCK cell layers by increasing apical delivery and seemingly expanding the apical cell surface domains. On the other hand, expression of antisense RNA directed against VIP17/MAL caused accumulation in the Golgi and/or impaired apical transport of different apical protein markers, i.e., influenza virus hemagglutinin, the secretory protein clusterin (gp80), the transmembrane protein gp114, and a glycosylphosphatidylinositol-anchored protein. However, antisense RNA expression did not affect the distribution of E-cadherin to the basolateral surface. Because VIP17/MAL associates with sphingolipid-cholesterol rafts, these data provide functional evidence that this protein is involved in apical transport and might be a component of the machinery clustering lipid rafts with apical cargo to form apical transport carriers.  (+info)

MAL, an integral element of the apical sorting machinery, is an itinerant protein that cycles between the trans-Golgi network and the plasma membrane. (3/85)

The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane-mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH(4)Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that approximately 30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.  (+info)

The MAL gene is expressed in primary mediastinal large B-cell lymphoma. (4/85)

Primary mediastinal large B-cell lymphoma (PMBL) appears to be a distinct clinicopathologic entity among diffuse large B-cell lymphomas (DLBLs). To find molecular alterations associated with this disease, we compared the mRNAs expressed in 3 PMBLs and 3 peripheral DLBLs by differential display-reverse transcription (DDRT) and identified a mRNA specifically expressed in PMBLs. Sequence analysis showed that this mRNA is encoded by the MAL gene, the expression of which was shown to be restricted to the T-cell lineage during hematopoiesis. MAL gene expression was demonstrated by Northern blot and reverse transcription-polymerase chain reaction (RT-PCR) in 8 of 12 PMBLs. However, there was little or no MAL gene expression in 8 peripheral DLBLs. Immunohistochemical analysis evidenced expression of MAL protein in tumoral B cells restricted to the PMBL subtype. Finally, Southern blot studies did not demonstrate rearrangement of the MAL gene. Altogether, our results indicate that MAL expression is recurrent in PMBLs, providing further evidence that PMBL represents a distinct entity among DLBLs. Because MAL protein is located in detergent-insoluble glycolipid-enriched membrane (GEM) domains involved in lymphocyte signal transduction, abnormal expression of MAL protein in the B-lymphoid lineage may have significant implications in PMBL lymphomagenesis.  (+info)

Isolation of MYADM, a novel hematopoietic-associated marker gene expressed in multipotent progenitor cells and up-regulated during myeloid differentiation. (5/85)

A large number of hematopoietic cytokines and their receptors as well as transcription factors have been shown to be involved in maturation of blood cells. However, many of the genes important for the differentiation of multipotent stem cells to specific cellular lineages are still unknown. To identify novel genes involved in lineage selection of myeloid cells, we have applied differential display analysis during commitment toward granulocytes and macrophages of an IL-3-dependent multipotent progenitor cell line, FDCP-mix. One regulated cDNA represented a novel gene with restricted expression pattern within the hematopoietic system and was strongly up-regulated when FDCP-mix cells differentiated in GM-CSF, G-CSF, and M-CSF. The expression appears to be differentiation stage-specific in myeloid cells and is absent in B and T lymphocytes. Thus we found expression in normal mouse bone marrow enriched for stem cells and multipotent progenitors (c-kit+Sca-1+Lin- cells). When these cells were induced to differentiate toward myeloid cells, MYADM was up-regulated. In contrast, during conditions known to favor the development of B cell progenitors, the gene was down-regulated. The gene, termed MYADM for myeloid-associated differentiation marker gene, shows 100% identity to expressed sequence tags from early mouse embryonic development as well as from the mouse lung and from activated mouse macrophages. The predicted 32-kDa MYADM protein contains multiple hydrophobic putative transmembrane segments and has several potential consensus sites for phosphorylation. In view of its expression pattern, MYADM could serve as a new marker gene for hematopoietic differentiation. Although the function is unknown, antisense oligonucleotides were able to inhibit colony formation of c-kit+ Lin- bone marrow cells, suggesting an important role for MYADM in myeloid differentiation.  (+info)

The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. (6/85)

The MAL proteolipid has been recently demonstrated as being necessary for correct apical sorting of the transmembrane influenza virus hemagglutinin (HA) in Madin-Darby canine kidney (MDCK) cells. The fact that, in contrast to MDCK cells, Fischer rat thyroid (FRT) cells target the majority of glycosylphosphatidylinositol (GPI)-anchored proteins to the basolateral membrane provides us with the opportunity to determine the role of MAL in apical transport of membrane proteins under conditions in which the majority of GPI-anchored proteins are (MDCK cells) or are not (FRT cells) targeted to the apical surface. Using an antisense oligonucleotide-based strategy to deplete endogenous MAL, we have observed that correct transport of apical transmembrane proteins associated (HA) or not (exogenous neurotrophin receptor and endogenous dipeptidyl peptidase IV) with lipid rafts, as well as that of the bulk of endogenous apical membrane, takes place in FRT cells by a pathway that requires normal MAL levels. Even transport of placental alkaline phosphatase, a GPI-anchored protein that is targeted apically in FRT cells, was dependent on normal MAL levels. Similarly, in addition to the reported effect of MAL on HA transport, depletion of MAL in MDCK cells caused a dramatic reduction in the apical delivery of the GPI-anchored gD1-DAF protein, neurotrophin receptor, and the bulk of membrane proteins. These results suggest that MAL is necessary for the overall apical transport of membrane proteins in polarized MDCK and FRT cells.  (+info)

BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. (7/85)

The MAL proteolipid, an integral protein present in glycolipid- and cholesterol-enriched membrane (GEM) rafts, is an element of the machinery necessary for apical sorting in polarized epithelial Madin-Darby canine kidney cells. MAL was the first member identified of an extended family of proteins that have significant overall sequence identity. In this study we have used a newly generated monoclonal antibody to investigate an unedited member of this family, named BENE, which was found to be expressed in endothelial-like ECV304 cells and normal human endothelium. Human BENE was characterized as a proteolipid protein predominantly present in GEM rafts in ECV304 cells. Coimmunoprecipitation experiments revealed that BENE interacted with caveolin-1. Confocal immunofluorescence and electron microscopic analyses indicated that BENE mainly accumulated into intracellular vesicular/tubular structures that partially colocalize with internal caveolin-1. In response to cell surface cholesterol oxidation, BENE redistributed to the dilated vesicular structures that concentrate most of the caveolin-1 originally on the cell surface. After cessation of cholesterol oxidation, a detectable fraction of the BENE molecules migrated to the plasmalemma accompanying caveolin-1 and then returned progressively to its steady state distribution. Together, these features highlight the BENE proteolipid as being an element of the machinery for raft-mediated trafficking in endothelial cells.  (+info)

An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin-Darby canine kidney cells. (8/85)

The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine -3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.  (+info)