Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. (57/863)

The enzyme heme oxygenase (HO), which exists in inducible (HO-1) and constitutive (HO-2) isoforms, degrades heme to biliverdin and CO. CO depresses cardiac contraction via cGMP. We aimed to clarify a possible role for the HO-CO pathway in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Four weeks after bile duct ligation or sham operation, rat ventricles were examined for HO-1 and HO-2 mRNA by RT-PCR and for protein expression by Western blotting. Total HO enzyme activity and cGMP levels were also measured. The effects of a HO inhibitor, zinc protoporphyrin IX (ZnPP), on ventricular cGMP levels and isolated papillary muscle contractility were studied. We found that HO-1 mRNA transcription and protein expression were significantly augmented in cirrhotic hearts compared with sham-operated controls, whereas there was no difference in HO-2 mRNA or protein levels. Total HO activity and cGMP levels were significantly increased in cirrhotic ventricles vs. controls. In cirrhotic ventricles, treatment with ZnPP significantly decreased cGMP production and improved the blunted papillary muscle contractility, whereas it had no effect on control muscles. CO perfusion inhibited papillary muscle contractility, an effect completely blocked by methylene blue and partially blocked by ZnPP. These results indicate that activation of the HO-CO-cGMP pathway is involved in the pathogenesis of cirrhotic cardiomyopathy.  (+info)

Fecal leukocyte stain has diagnostic value for outpatients but not inpatients. (58/863)

The methylene blue stain for fecal leukocytes (FL) is widely used as an adjunct to slower but more accurate tests of diarrheal etiology, such as stool culture (SCx) or toxin assays for Clostridium difficile. Prior studies investigating the utility of FL for predicting SCx and C. difficile toxin assay (CDTA) results did not evaluate the importance of inpatient versus outpatient status. We conducted a study of patients who submitted a stool specimen to the Stanford Hospital Microbiology Laboratory between May 1998 and April 1999. The results for stool specimens that were tested by FL and by a confirmatory test (either SCx or CDTA) were used to determine whether the FL method helped to predict the results of these tests. Of 797 stools that were tested by FL method and at least one confirmatory test, 502 stools were tested by CDTA, and 473 stools were cultured. The FL test was 14% sensitive and 90% specific for C. difficile with a diagnostic threshold of one white blood cell/high-power field (WBC/HPF). The overall likelihood ratio (LR) for a positive CDTA was 1.4 with a 95% confidence interval (CI) of 0. 5 to 3.7 (P = 0.5) and was similar among inpatients and outpatients. In contrast, the presence of >/=1 WBC/HPF was 52% sensitive and 88% specific for the 27 positive SCx results and helped to predict a positive SCx result (LR, 4.2; 95% CI, 2.7 to 6.5; P < 0.001). The sensitivity of >/=1 WBC/HPF was 57%, and its predictive value for SCx was higher among outpatients (outpatient LR, 5.0; 95% CI, 2.9 to 8.6; P < 0.001; inpatient LR, 1.9; 95% CI, 0.3 to 10.8; P = 0.5). Among inpatients, only 4 (1.5%) of the 273 SCx results were positive, and the presence of >/=1 WBC/HPF was insensitive (25%) and did not predict a positive SCx (LR, 1.9; 95% CI, 0.3 to 10.8; P = 0.5). When the data were reanalyzed using a diagnostic threshold of five WBC/HPF for FL, the predictive power of the FL method was similar. Thus, FL was of no value in predicting CDTA positivity, nor was it helpful in predicting SCx results for inpatients. Neither SCx nor the FL method should routinely be performed on samples from inpatients. Among outpatients, presence of FLs should suggest a bacterial diarrhea in clinically compatible cases.  (+info)

Cyclic GMP-dependent relaxation of isolated rat renal glomeruli induced by extracellular ATP. (59/863)

The relaxing effect of extracellular ATP on renal glomeruli has been investigated by applying ATP and its analogues to suspensions of angiotensin II-precontracted rat renal glomeruli. Based on changes of glomerular [3H]inulin space (GIS) the relaxation of glomeruli was analysed in the presence of agonists: ATP, ADP, AMP, UTP, 2-methylthio-ATP (P2Y agonist), beta,gamma-methylene-ATP (P2X agonist) and adenosine. ATP, 2-methylthio-ATP, ADP and UTP induced concentration-dependent relaxation whereas AMP, beta,gamma-methylene-ATP and adenosine had no effect. The rank order of relaxation potency was 2-methylthio-ATP > ATP > ADP > UTP. An inhibitor of constitutive nitric oxide synthase (NOS), Nomega-nitro-L-arginine (NNA) prevented the ATP-induced increased accumulation of L-citrulline and the relaxation effect of ATP. An inhibitor of the neuronal isoform of NOS, 7-nitroindazole, had no effect on the relaxation effect of ATP. The relaxing effect of ATP was prevented in the presence of inhibitors of cyclic guanylyl cyclase: methylene blue (MB) and the more specific inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ). ATP stimulated an accumulation of cGMP that was diminished in the presence of MB. We indicated that extracellular ATP may relax the glomeruli via activation of P2Y receptors with the subsequent activation of the endothelial isoform of nitric oxide synthase and soluble guanylyl cyclase. We suggest that, based on the described mechanism, extracellular ATP may increase the filtration surface which, in turn, may influence the glomerular filtration rate.  (+info)

Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems. (60/863)

In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.  (+info)

Esculetin inhibits cartilage resorption induced by interleukin 1alpha in combination with oncostatin M. (61/863)

OBJECTIVE: To determine if a new inhibitor, esculetin (EST), can block resorption of cartilage. METHODS: Interleukin 1alpha (IL1alpha, 0.04-5 ng/ml) and oncostatin M (OSM, 0.4-50 ng/ml) were used to stimulate the release of proteoglycan and collagen from bovine nasal cartilage and human articular cartilage in explant culture. Proteoglycan and collagen loss were assessed by dimethylmethylene blue and hydroxyproline assays, respectively. Collagenase levels were measured by assay of bioactivity and by enzyme linked immunosorbent assay (ELISA). The effects of EST on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the transformed human chondrocyte cell line T/C28a4 were assessed by northern blot analysis. TIMP-1 protein levels were assayed by ELISA. The effect of EST on the MMP-1 promoter was assessed using a promoter-luciferase construct in transient transfection studies. RESULTS: EST inhibited proteoglycan and collagen resorption in a dose dependent manner with significant decreases seen at 66 microM and 100 microM EST, respectively. Collagenolytic activity was significantly decreased in bovine nasal cartilage cultures. In human articular cartilage, EST also inhibited IL1alpha + OSM stimulated resorption and decreased MMP-1 levels. TIMP-1 levels were not altered compared with controls. In T/C28a4 chondrocytes the IL1alpha + OSM induced expression of MMP-1, MMP-3, and MMP-13 mRNA was reduced to control levels by 250 microM EST. TIMP-1 mRNA levels were unaffected by EST treatment. All cytokine stimulation of an MMP-1 luciferase-promoter construct was lost in the presence of the inhibitor. CONCLUSION: EST inhibits degradation of bovine nasal cartilage and human articular cartilage stimulated to resorb with IL1alpha + OSM.  (+info)

Polyamines, NO and cGMP mediate stimulation of DNA synthesis by tumor necrosis factor and lipopolysaccharide in chick embryo cardiomyocytes. (62/863)

OBJECTIVE: We have recently shown that tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS) stimulate DNA synthesis in chick embryo cardiomyocytes (CMs). The aim of the present research was to investigate the pathways involved in this mitogenic response. METHODS: CMs were isolated from 10-day-old chick embryos and grown to confluence. After 20 h of serum starvation the cells were treated with TNFalpha and LPS, and/or specific agonists and antagonists to manipulate the levels of polyamines, NO, cGMP and their biosynthetic enzymes ornithine decarboxylase (ODC), nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC). ODC, NOS, sGC activities and cGMP contents were determined by radiochemical procedures. DNA synthesis was determined by incorporation of [3H]-thymidine. RESULTS: Treatment of CMs with TNFalpha and LPS increased cell number and [3H]-thymidine incorporation. Addition of TNFalpha and LPS provoked an induction of ODC, with consequent polyamine accumulation, and a more delayed enhancement of NOS activity, which appeared to be independent of the activation of the ODC-polyamine system. TNFalpha and LPS treatment also enhanced cGMP level in CMs and both polyamine and NO biosyntheses appeared to be required. Experiments with specific inhibitors of ODC and NOS, as well as with inhibitors of sGC and cGMP-dependent protein kinase (PKG), showed that polyamine-, NO- and cGMP-dependent pathways are required for the mitogenic action of TNFalpha and LPS. Moreover, addition of exogenous polyamines to untreated cells raised the cGMP level in a NO-dependent fashion, and enhanced [3H]-thymidine incorporation. The latter effect was inhibited by sGC or PKG inhibitors. Treatment of quiescent cells with NO donors, 8-bromo-cGMP or YC-1, an sGC activator, also promoted DNA synthesis. Furthermore, putrescine and NO donor can additively activate sGC in cell-free extracts. CONCLUSION: TNFalpha and LPS stimulate DNA synthesis in chick embryo CMs and this effect is mediated by polyamines, NO and intracellular cGMP.  (+info)

Effect of hydrogen peroxide on guinea pig nasal mucosa vasculature. (63/863)

The effect of hydrogen peroxide (H2O2) on guinea pig nasal mucosa vasculature was studied by in vitro assay. H2O2 elicited relaxation of guinea pig nasal mucosa strips precontracted with phenylephrine in a concentration-dependent manner. The relaxant response to H2O2 was abolished in the presence of catalase. Preincubation of the strips with N(G)-nitro-L-arginine methyl ester or methylene blue significantly attenuated the relaxant responses elicited by H2O2. Fluorescence caused by DAF-2 DA, a fluorescence indicator for nitric oxide, was observed along the nasal mucosa vasculature in response to H2O2. These results suggest that H2O2 induced relaxation of the guinea pig nasal mucosa vasculature and that this relaxation is mediated by the NO/cGMP pathway.  (+info)

Ascorbic acid-induced modulation of venous tone in humans. (64/863)

Ascorbic acid appears to have vasodilatory properties, but the underlying mechanisms are not well understood. The aims of this study were to define the acute effects of locally infused ascorbic acid in human veins and to explore underlying mechanisms by using pharmacological tools in vivo. Ascorbic acid was infused in dorsal hand veins submaximally preconstricted with the alpha(1)-adrenoceptor agonist phenylephrine or with prostaglandin F(2alpha) in 23 healthy male nonsmokers, and the venodilator response was measured. Ascorbic acid produced dose-dependent dilation with maximum reversal of constriction of 38+/-4% in phenylephrine-preconstricted veins and of 51+/-13% in prostaglandin F(2alpha)-preconstricted veins. Oral pretreatment with the cyclooxygenase inhibitor acetylsalicylic acid or local coinfusion of ascorbic acid and the nitric oxide synthase inhibitor N:(G)-monomethyl-L-arginine had no effect, but coinfusion of ascorbic acid and methylene blue (to inhibit cGMP generation) abolished venodilation. Coinfusion of ascorbic acid and the nonselective potassium channel blocker quinidine abolished venodilation, whereas the inhibitor of ATP-dependent potassium channels glibenclamide had no effect. In cultured bovine endothelial cells, ascorbic acid did not affect intracellular calcium concentration but blunted the response to ATP or digitonin exposure. Ascorbic acid, in millimolar concentrations, dilates human hand veins, presumably by activation of vascular smooth muscle potassium channels through cGMP. This activation is independent of eNOS-mediated nitric oxide synthesis and cyclooxygenase products and does not involve ATP-dependent potassium channels.  (+info)