MS-8209, a water-soluble amphotericin B derivative, affects both scrapie agent replication and PrPres accumulation in Syrian hamster scrapie. (41/3858)

Amphotericin B (AmB) has been shown to delay hamster scrapie. Infectivity studies have been performed previously using AmB in order to understand the relationship between the accumulation of an abnormal isoform (PrPres) of the prion protein and 263K scrapie agent replication in the brain. The first study reported that AmB had no effect upon agent replication, although it delayed the development of both clinical signs and PrPres accumulation. However, subsequent experiments using the same model showed a significant effect both on agent replication and PrPres accumulation early in infection. This fundamental discrepancy was assumed to be linked to differences in experimental protocols. In order to unravel the issue, a new experiment has been performed encompassing different protocols and using an AmB derivative, MS-8209, that can be used at higher doses because of its lower toxicity. The findings of this study exclude the suspected differences in the protocols as the reason for previous conflicting results, and suggest strongly that these discrepancies were due to a low dose of AmB causing a 'threshold effect'. Overall, this study indicates that, in this model, PrPres cannot be dissociated from infectivity by polyene antibiotics.  (+info)

Magnetometric evaluation for the effect of chrysotile on alveolar macrophages. (42/3858)

Alveolar macrophages are thought to play an important role in fibrogenesis due to asbestos exposure. In this experiment, we evaluated the effect mainly by unique magnetometry and also by conventional methods such as lactate dehydrogenase (LDH) activity measurement and morphological observations. Alveolar macrophages obtained from Syrian golden hamsters by bronchoalveolar lavages were exposed 18 hours in vitro to Fe3O4 as an indicator for magnetometry and chrysotile for experiments. A rapid decrease of the remanent magnetic field, so called "relaxation", was observed after the cessation of an external magnetic field in macrophages phagocytizing Fe3O4 alone, while relaxation was delayed in those concurrently exposed to chrysotile. Since relaxation is thought due to the cytoskeleton-driven random rotation of phagosomes containing iron oxide particles, chrysotile is considered to interfere with the cytoskeletal function of macrophages. Release of LDH from chrysotile-exposed macrophages into the medium was recognized, but it was not significantly higher than the controls. Apoptosis was negligible in macrophages exposed to chrysotile by the DNA ladder detection, the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling method and morphological observations. Electron microscopical examinations revealed early necrotic changes in macrophages exposed to chrysotile. These findings indicate that cell magnetometry detects impaired cytoskeletal function due to in vitro exposure to chrysotile.  (+info)

Exogenous calmodulin potentiates vasodilation elicited by phospholipid-associated VIP in vivo. (43/3858)

The purpose of this study was to determine whether exogenous calmodulin potentiates vasoactive intestinal peptide (VIP)-induced vasodilation in vivo and, if so, whether this response is amplified by association of VIP with sterically stabilized liposomes. Using intravital microscopy, we found that calmodulin suffused together with aqueous and liposomal VIP did not potentiate vasodilation elicited by VIP in the in situ hamster cheek pouch. However, preincubation of calmodulin with liposomal, but not aqueous, VIP for 1 and 2 h and overnight at 4 degrees C before suffusion significantly potentiated vasodilation (P < 0.05). Calmodulin-induced responses were significantly attenuated by calmidazolium, trifluoperazine, and NG-nitro-L-arginine methyl ester (L-NAME) but not D-NAME. The effects of L-NAME were reversed by L- but not D-arginine. Indomethacin had no significant effects on calmodulin-induced responses. Calmodulin had no significant effects on adenosine-, isoproterenol-, acetylcholine-, and calcium ionophore A-23187-induced vasodilation. Collectively, these data indicate that exogenous calmodulin amplifies vasodilation elicited by phospholipid-associated, but not aqueous, VIP in the in situ peripheral microcirculation in a specific, calmodulin active sites-, and nitric oxide-dependent fashion. We suggest that extracellular calmodulin, phospholipids, and VIP form a novel functionally coordinated class of endogenous vasodilators.  (+info)

Dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux in vivo. (44/3858)

The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.  (+info)

Active and higher intracellular uptake of 5-aminolevulinic acid in tumors may be inhibited by glycine. (45/3858)

Topical 5-aminolevulinic acid is used for the fluorescence-based diagnosis and photodynamic treatment of superficial precancerous and cancerous lesions of the skin. Thus, we investigated the kinetics of 5-aminolevulinic acid-induced fluorescence and the mechanisms responsible for the selective formation of porphyrins in tumors in vivo. Using amelanotic melanomas (A-Mel-3) grown in dorsal skinfold chambers of Syrian golden hamsters fluorescence kinetics were measured up to 24 h after topical application of 5-aminolevulinic acid (1%, 3%, or 10%) for 1 h, 4 h, or 8 h by intravital microscopy (n = 54). Maximal fluorescence intensity in tumors after 1 h application (3% 5-aminolevulinic acid) occurred 150 min and after 4 h application (3% 5-aminolevulinic acid) directly thereafter. Increasing either concentration of 5-aminolevulinic acid or application time did not yield a higher fluorescence intensity. The selectivity of the fluorescence in tumors decreased with increasing application time. Fluorescence spectra indicated the formation of protoporphyrin IX (3% 5-aminolevulinic acid, 4 h; n = 3). The simultaneous application of 5-aminolevulinic acid (3%, 4 h) and glycine (20 microM or 200 microM; n = 10) reduced fluorescence in tumor and surrounding host tissue significantly. In contrast, neither decreasing iron concentration by desferrioxamine (1% and 3%; n = 10) nor inducing tetrapyrrole accumulation using 1, 10-phenanthroline (7.5 mM; n = 5) increased fluorescence in tumors. The saturation and faster increase of fluorescence in the tumor together with a reduction of fluorescence by the application of glycine suggests an active and higher intracellular uptake of 5-aminolevulinic acid in tumor as compared with the surrounding tissue. Shorter application (1 h) yields a better contrast between tumor and surrounding tissue for fluorescence diagnosis. The additional topical application of modifiers of the heme biosynthesis, desferrioxamine or 1,10-phenanthroline, however, is unlikely to enhance the efficacy of topical 5-aminolevulinic acid-photodynamic therapy at least in our model.  (+info)

5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. (46/3858)

The suprachiasmatic nucleus (SCN) receives glutamatergic afferents from the retina and serotonergic afferents from the midbrain, and serotonin (5-HT) can modify the response of the SCN circadian oscillator to light. 5-HT1B receptor-mediated presynaptic inhibition has been proposed as one mechanism by which 5-HT modifies retinal input to the SCN (Pickard et al., 1996). This hypothesis was tested by examining the subcellular localization of 5-HT1B receptors in the mouse SCN using electron microscopic immunocytochemical analysis with 5-HT1B receptor antibodies and whole-cell patch-clamp recordings from SCN neurons in hamster hypothalamic slices. 5-HT1B receptor immunostaining was observed associated with the plasma membrane of retinal terminals in the SCN. 1-[3-(Trifluoromethyl)phenyl]-piperazine HCl (TFMPP), a 5-HT1B receptor agonist, reduced in a dose-related manner the amplitude of glutamatergic EPSCs evoked by stimulating selectively the optic nerve. Selective 5-HT1A or 5-HT7 receptor antagonists did not block this effect. Moreover, in cells demonstrating an evoked EPSC in response to optic nerve stimulation, TFMPP had no effect on the amplitude of inward currents generated by local application of glutamate. The effect of TFMPP on light-induced phase shifts was also examined using 5-HT1B receptor knock-out mice. TFMPP inhibited behavioral responses to light in wild-type mice but was ineffective in inhibiting light-induced phase shifts in 5-HT1B receptor knock-out mice. The results indicate that 5-HT can reduce retinal input to the circadian system by acting at presynaptic 5-HT1B receptors located on retinal axons in the SCN.  (+info)

Enzymatic synthesis of biopterin from D-erythrodihydroneopterin triphosphate by extracts of kidneys from Syrian golden hamsters. (47/3858)

An enzyme system was found in either crude homogenates of dialyzed extracts of liver, kidney, lung, and brain from Syrian golden hamsters that catalyzed the synthesis of radioactive 6(L-erythro-1',2'-dihydroxypropyl)pterin (biopterin) from [U-14C]6(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate (D-erythrolH2neopterin-PPP) preparation. The specific radioactivity of biopterin was found to be comparable to that of D-erythroH2neopterin-PPP. The enzyme system from hamster kidney was purified severalfold by fractionation with ammonium sulfate and with an Ultrogel AcA-34 column. It was demonstrated that (a) NADPH or NADAH was essential and that (b) Mg2+ was stimulatory for the enzymatic synthesis of biopterin from D-erythroH2-NEOPTERIN-PPP. Also GTP and nonphosphorylated neopterins were not converted to biopterin. Although 6-lactyl-7,8-dihydropterin (sepiapterin) was converted to biopterin in the presence of NADPH, sepiapterin was not detected from D-erythroH2neopterin-PPP in the absence of NADPH. A preliminary experiment was performed to identify dihydrobiopterin.  (+info)

Glutathione-S-transferase activity in malarial parasites. (48/3858)

Glutathione-S-transferase (GST) activity has been detected in rodent (Plasmodium berghei, P. yoelii), simian (P. knowlesi) and human (P. falciparum) malarial parasites, and in different intraerythrocytic stages of P. knowlesi (schizont > ring > trophozoite). In chloroquine-resistant strains of rodent and human malarial parasites GST activity significantly increases compared to sensitive strains. Further, the increase in enzyme activity is directly related to drug pressure of resistant P. berghei. Complete inhibition of chloroquine-sensitive and resistant P. berghei glutathione-S-transferase activities was observed at 2.5 and 5. micrometer concentration of hemin, respectively. An inverse relationship was found between the heme level and enzyme activity of chloroquine-resistant and sensitive P. berghei. Chloroquine, artemisinin, and primaquine noticeably inhibited GST activity in P. knowlesi.  (+info)