Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. (1/742)

The role of conformation-based quality control in the early secretory pathway is to eliminate misfolded polypeptides and unassembled multimeric protein complexes from the endoplasmic reticulum, ensuring the deployment of only functional molecules to distal sites. The intracellular fate of terminally misfolded human alpha1-antitrypsin was examined in hepatoma cells to identify the functional role of asparagine-linked oligosaccharide modification in the selection of glycoproteins for degradation by the cytosolic proteasome. Proteasomal degradation required physical interaction with the molecular chaperone calnexin. Altered sedimentation of intracellular complexes following treatment with the specific proteasome inhibitor lactacystin, and in combination with mannosidase inhibition, revealed that the removal of mannose from attached oligosaccharides abrogates the release of misfolded alpha1-antitrypsin from calnexin prior to proteasomal degradation. Intracellular turnover was arrested with kifunensine, implicating the participation of endoplasmic reticulum mannosidase I in the disposal process. Accelerated degradation occurred in a mannosidase-independent manner and was arrested by lactacystin, in response to the posttranslational inhibition of glucosidase II, demonstrating that the attenuated removal of glucose from attached oligosaccharides functions as the underlying rate-limiting step in the proteasome-mediated pathway. A model is proposed in which the removal of mannose from multiple attached oligosaccharides directs calnexin in the selection of misfolded alpha1-antitrypsin for degradation by the proteasome.  (+info)

Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum. (2/742)

The manA gene of Thermoanaerobacterium polysaccharolyticum was cloned in Escherichia coli. The open reading frame of manA is composed of 3,291 bases and codes for a preprotein of 1,097 amino acids with an estimated molecular mass of 119,627 Da. The start codon is preceded by a strong putative ribosome binding site (TAAGGCGGTG) and a putative -35 (TTCGC) and -10 (TAAAAT) promoter sequence. The ManA of T. polysaccharolyticum is a modular protein. Sequence comparison and biochemical analyses demonstrate the presence of an N-terminal leader peptide, and three other domains in the following order: a putative mannanase-cellulase catalytic domain, cellulose binding domains 1 (CBD1) and CBD2, and a surface-layer-like protein region (SLH-1, SLH-2, and SLH-3). The CBD domains show no sequence homology to any cellulose binding domain yet reported, hence suggesting a novel CBD. The duplicated CBDs, which lack a disulfide bridge, exhibit 69% identity, and their deletion resulted in both failure to bind to cellulose and an apparent loss of carboxymethyl cellulase and mannanase activities. At the C-terminal region of the gene are three repeats of 59, 67, and 56 amino acids which are homologous to conserved sequences found in the S-layer-associated regions within the xylanases and cellulases of thermophilic members of the Bacillus-Clostridium cluster. The ManA of T. polysaccharolyticum, besides being an extremely active enzyme, is the only mannanase gene cloned which shows this domain structure.  (+info)

Endometrial lysosomal enzyme activity in normal cycling endometrium. (3/742)

The objective of this study was to evaluate the possible role of four lysosomal enzymes in endometrial function and remodelling during the normal menstrual cycle by fluorimetric measurement (acid phosphatase, N-acetyl-beta-D-glucosaminidase, alpha-L-fucosidase and alpha-D-mannosidase). A prospective study was conducted of 45 endometrial biopsies obtained from women with normal menstrual cycles. Activity of all four enzymes was identified in human endometrium. Activity of acid phosphatase and N-acetyl-beta-D-glucosaminidase was relatively high, whilst that of alpha-L-fucosidase and alpha-D-mannosidase was low. There was no significant change in the activity of any of the four enzymes from the proliferative to the secretory phase of the cycle. This study suggests that the activity of these enzymes remains constant throughout a major portion of the normal cycle.  (+info)

Cloning and sequencing of beta-mannosidase gene from Aspergillus aculeatus no. F-50. (4/742)

The manB gene, coding for a unique beta-mannosidase (MANB) of Aspergillus aculeatus, was cloned from genomic and cDNA libraries, and sequenced. The gene consists of 2,811 bp encoding a polypeptide of 937 amino acid residues with a molecular mass of 104,214 Da. The A. aculeatus MANB shared amino acid sequence identity with MANB of human (24%), goat (24%), bovine (24%), and Caenorhabditis elegans (22%). When the A. aculeatus MANB was compared with other related enzymes, a Glu residue corresponding to the active site identified by the Escherichia coli beta-galactosidase and the human beta-guclonidase was conserved. This is the first fungal gene that encodes MANB.  (+info)

Uptake of iodinated human kidney alpha-D-mannosidase by rat liver- Association with membrane elements and stability in vivo and in vitro. (5/742)

1. Human kidney alpha-D-mannosidase (form A) was labelled with 125I to a specific radio-activity of approx. 2250muCi/mg of protein, essentially without loss of enzymic activity. The enzymic activity and radioactivity of the iodinated material also co-migrated in gel filtration and gel electrophoresis. 2. The binding of 125I-labelled mannosidase in vitro to particulate material in liver and kidney homogenates was of the other of 2 pg/mg of particulate material in liver and kidney homogenates was of the order of 2pg/mg of particulate protein withing 16h at 37 degrees C, and essentially zero in intervals of up to 60 min. The degradation in vitro of labelled exogenous mannosidase was of the order of 10-20pg/ 16th per mg of protein in postnuclear supernatant, and it was saturated entirely within 1h at 37 degrees C. 3. The binding of labelled mannosidase in vivo to particulate elements of liver homogenates 60 min after intravenous injection was at least 10 times higher in terms of specific radioactivity than the highest value attainable in vitro. Virtually all exogenous enzyme bound to liver particulate material could be recovered in macromolecular form after disruption of membranes by detergents. 4. The radioactive enzyme bound to liver particulate material could be detached almost completely by shearing, repeated freezing and thawing, and exposure to strong detergents under conditions that do not eliminate rough-endoplasmic-membrane structure. It could bot be released, however, by high salt concentration (0.5M-KC1) or by exposure to weak detergents such as Tween 80. The particle-bound enzyme should thus be associated with plasma membranes and lysosome-like elements. 5. Of the rat tissues studied, only liver could approach, within 60 min after the injection, the concentration of exogenous mannosidase found in the blood serum. The activity per g tissue weight fell progressively from liver (60% of serum value) to kidney (16% of serum value), lung (8% of serum vlaue), spleen (6% of serum value) and brain (0.9% of serum value). Most of the radioactive enzyme found in tissues other than liver appeared to be present in a free form, whereas in liver more than 50% of the labelled enzyme was associated with membrane elements.  (+info)

Inhibition of secretion by 1,3-Cyclohexanebis(methylamine), a dibasic compound that interferes with coatomer function. (6/742)

We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the epsilon-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1, 3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.  (+info)

Isolation and purification of a neutral alpha(1,2)-mannosidase from Trypanosoma cruzi. (7/742)

Trypanosoma cruzi is an obligatory intracellular protozoan parasite that causes Chagas' disease in humans. Although a fair amount is known about the biochemistry of certain trypanosomes, very little is known about the enzymic complement of synthesis and processing of glycoproteins and/or functions of the subcellular organelles in this parasite. There have been very few reports on the presence of acid and neutral hydrolases in Trypanosoma cruzi. Here we report the first purification and characterization of a neutral mannosidase from the epimastigote stage of Trypanosoma cruzi. The neutral mannosidase was purified nearly 800-fold with an 8% recovery to apparent homogeneity from a CHAPS extract of epimastigotes by the following procedures: (1) metal affinity chromatography on Co+2-Sepharose, (2) anion exchange, and (3) hydroxylapatite. The purified enzyme has a native molecular weight of 150-160 kDa and is apparently composed of two subunits of 76 kDa. The purified enzyme exhibits a broad pH profile with a maximum at pH 5.9-6.3. It is inhibited by swainsonine (Ki, 0.1 microM), D-mannono-delta-lactam (Ki, 20 microM), kifunensine (Ki, 60 microM) but not significantly by deoxymannojirimycin. The enzyme is activated by Co2+and Ni2+and strongly inhibited by EDTA and Fe2+. The purified enzyme is active against p-nitrophenyl alpha-D-mannoside (km = 87 microM). High-mannose Man9GlcNAc substrate was hydrolyzed by the purified enzyme to Man7GlcNAc at pH 6.1. The purified enzyme does not show activity against alpha1,3- or alpha1,6-linked mannose residues. Antibodies against the recently purified lysosomal alpha-mannosidase from T.cruzi did not react with the neutral mannosidase reported here.  (+info)

Molecular and enzymic properties of recombinant 1, 2-alpha-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells. (8/742)

For the construction of an overexpression system of the intracellular 1,2-alpha-mannosidase (EC 3.2.1.113) gene (msdS) from Aspergillus saitoi (now designated Aspergillus phoenicis), the N-terminal signal sequence of the gene was replaced with that of the aspergillopepsin I (EC 3.4.23.18) gene (apnS) signal, one of the same strains as described previously. Then the fused 1, 2-alpha-mannosidase gene (f-msdS) was inserted into the NotI site between P-No8142 and T-agdA in the plasmid pNAN 8142 (9.5 kbp) and thus the Aspergillus oryzae expression plasmid pNAN-AM1 (11.2 kbp) was constructed. The fused f-msdS gene has been overexpressed in a transformant A. oryzae niaD AM1 cell. The recombinant enzyme expressed in A. oryzae cells was purified to homogeneity in two steps. The system is capable of making as much as about 320 mg of the enzyme/litre of culture. The recombinant enzyme has activity with methyl-2-O-alpha-d-mannopyranosyl alpha-D-mannopyranoside at pH 5.0, while no activity was determined with methyl-3-O-alpha-D-mannopyranosyl alpha-D-mannopyranoside or methyl-6-O-alpha-D-mannopyranosyl alpha-D-mannopyranoside. The substrate specificity of the enzyme was analysed by using pyridylaminated (PA)-oligomannose-type sugar chains, Man9-6(GlcNAc)2-PA (Man is mannose; GlcNAc is N-acetylglucosamine). The enzyme hydrolysed Man8GlcNAc2-PA (type 'M8A') fastest, and 'M6C' {Manalpha1-3[Manalpha1-2Manalpha1-3(Manalpha1-6) Manalpha1-6]Manbeta1- 4GlcNAcbeta1-4GlcNAc-PA} slowest, among the PA-sugar chains. Molecular-mass values of the enzyme were determined to be 63 kDa by SDS/PAGE and 65 kDa by gel filtration on Superose 12 respectively. The pI value of the enzyme was 4.6. The N-terminal amino acid sequence of the enzyme was GSTQSRADAIKAAFSHAWDGYLQY, and sequence analysis indicated that the signal peptide from apnS gene was removed. The molar absorption coefficient, epsilon, at 280 nm was determined as 91539 M-1.cm-1. Contents of the secondary structure (alpha-helix, beta-structure and the remainder of the enzyme) by far-UV CD determination were about 55, 38 and 7% respectively. The melting temperature, Tm, of the enzyme was 71 degrees C by differential scanning calorimetry. The calorimetric enthalpy, DeltaHcal, of the enzyme was calculated as 13.3 kJ.kg of protein-1. Determination of 1 g-atom of Ca2+/mol of enzyme was performed by atomic-absorption spectrophotometry.  (+info)