Manganese cations increase the mutation rate of human immunodeficiency virus type 1 ex vivo. (65/4482)

Human immunodeficiency virus (HIV) reverse transcription is an error-prone process with an overall mutation rate of approximately 3.4 x 10(-5) per base per replication cycle. This rate can be modulated by changes in different components of the retrotranscription reaction. In particular, in vitro substitution of magnesium cations (Mg2+) by manganese cations (Mn2+) has been shown to increase misincorporation of deoxynucleotide triphosphates (dNTPs) and to alter substrate specificity. Here, it is shown that Mn2+ also increases the HIV mutation rate ex vivo. Treatment of permissive cells with Mn2+ and subsequent HIV infection resulted in at least 6-fold and 10-fold increases in the mutant and mutation frequencies respectively, thus illustrating a further example of how to influence HIV genetic variation.  (+info)

Interconversion of Mn(2+)-dependent and -independent protein phosphatase 2A from human erythrocytes: role of Zn(2+) and Fe(2+) in protein phosphatase 2A. (66/4482)

Human erythrocyte Mn(2+)-dependent (C'A') and -independent (CA) protein-serine/threonine phosphatase (PP) 2A are composed of 34-kDa catalytic C' and C subunits, in which the metal dependency resides, and 63-kDa regulatory A' and A subunits, respectively. Each catalytic and regulatory subunit gave the same V8- and papain-peptide maps, respectively. Stoichiometric zinc and substoichiometric iron were detected in CA but not in C'A' [Nishito et al. (1999) FEBS Lett. 447, 29-33]. The Mn(2+)-dependent protein-tyrosine phosphatase (PTP) activity of C'A' was about 70-fold higher than that of CA. Pre-incubation of CA with 25 mM NaF changed CA to a Mn(2+)-dependent form with higher PTP activity. The same NaF treatment had no effect on C'A'. Pre-incubation of C'A' with ZnCl(2), zinc-metallothionein, or FeCl(2) activated the Mn(2+)-independent PP activity, but pre-incubation with FeCl(3) did not. Ascorbate in the pre-incubation and assay mixture significantly stimulated the effect of FeCl(2). Pre-incubation of C'A' with 5 microM ZnCl(2) and 15 microM FeCl(2) in the presence of 1 mM ascorbate synergistically stimulated the Mn(2+)-independent PP activity, with concomitant suppression of the Mn(2+)-dependent PP and PTP activities. The PP and PTP activities of CA were unaffected by the same zinc and/or iron treatment. Micromolar concentrations of vanadate strongly inhibited the Mn(2+)-dependent PP activity of C'A' but only slightly inhibited the PP activity of CA. Using the distinct effect of vanadate as an indicator, the interconversion between CA and C'A' with the above mentioned treatments was proved. These results support the notion that Mn(2+)-independent CA is a Zn(2+)- and Fe(2+)-metalloenzyme, whose apoenzyme is Mn(2+)-dependent C'A'.  (+info)

Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. (67/4482)

Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A). While the expression of LapA genes are well characterized, the specificity of the LAP-A enzyme has not been studied. The LAP-A preprotein and mature polypeptide were overexpressed in Escherichia coli. PreLAP-A was not processed and was inactive accumulating in inclusion bodies. In contrast, 55-kDa mature LAP-A subunits assembled into an active, 357-kDa enzyme in E. coli. LAP-A from E. coli cultures was purified to apparent homogeneity and characterized relative to its animal (porcine LAP) and prokaryotic (E. coli PepA) homologues. Similar to the porcine and E. coli enzymes, the tomato LAP-A had high temperature and pH optima. Mn2+ was a strong activator for all three enzymes, while chelators, zinc ion, and the slow-binding aminopeptidase inhibitors (amastatin and bestatin) strongly inhibited activities of all three LAPs. The substrate specificities of porcine, E. coli and tomato LAPs were determined using amino-acid-p-nitroanilide and -beta-naphthylamide substrates. The tomato LAP-A preferentially hydrolyzed substrates with N-terminal Leu, Met and Arg residues. LAP-A had substantially lower levels of activity on other chromogenic substrates. Several differences in substrate specificities for the animal, plant and prokaryotic enzymes were noted.  (+info)

Plausible phosphoenolpyruvate binding site revealed by 2.6 A structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli. (68/4482)

We have determined the crystal structure of Mn2+-bound Escherichia coli phosphoenolpyruvate carboxylase (PEPC) using X-ray diffraction at 2.6 A resolution, and specified the location of enzyme-bound Mn2+, which is essential for catalytic activity. The electron density map reveals that Mn2+ is bound to the side chain oxygens of Glu-506 and Asp-543, and located at the top of the alpha/beta barrel in PEPC. The coordination sphere of Mn2+ observed in E. coli PEPC is similar to that of Mn2+ found in the pyruvate kinase structure. The model study of Mn2+-bound PEPC complexed with phosphoenolpyruvate (PEP) reveals that the side chains of Arg-396, Arg-581 and Arg-713 could interact with PEP.  (+info)

Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. (69/4482)

Genome sequence analysis of Treponema pallidum, the causative agent of syphilis, suggests that this bacterium has a limited iron requirement with few, if any, proteins that require iron. Instead, T. pallidum may use manganese-dependent enzymes for metabolic pathways. This strategy apparently alleviates the necessity of T. pallidum to acquire iron from the host, thus overcoming iron limitation, which is a primary host defense. Interestingly, a putative metal-dependent regulatory protein, TroR, which has homology with the diphtheria toxin regulatory protein, DtxR, from Corynebacterium diphtheriae was identified from T. pallidum. We describe here the characterization of TroR, a regulatory protein. Mobility-shift DNA binding and DNase I footprint assays indicated that purified TroR bound to a 22-nt region of dyad symmetry that overlaps the -10 region of the promoter of the tro operon, which contains the genes for a putative metal transport system, the glycolytic enzyme phosphoglycerate mutase, and TroR. Unlike other metal-dependent regulatory proteins like diphtheria toxin regulatory protein and the ferric ion uptake regulator, Fur, which can be activated by divalent metals such as Fe(2+), Mn(2+), Co(2+), Ni(2+), and Zn(2+), TroR is activated only by Mn(2+). The TroR-Mn(2+) complex binds its target sequence and blocks transcription of the troPO/lacZ fusion, suggesting that TroR acts as a metal-dependent repressor in vivo. In addition, TroR exists as a dimer in both its inactive (metal free) and active states as indicated by chemical crosslinking experiments. Based on these data, we propose that TroR represents a unique regulatory system for controlling gene expression in T. pallidum in response to Mn(2+).  (+info)

Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. (70/4482)

Characterization of mammalian homologues of Drosophila transient receptor potential protein (TRP) is an important clue to understand molecular mechanisms underlying Ca(2+) influx activated in response to stimulation of G(q) protein-coupled receptors in vertebrate cells. Here we have isolated cDNA encoding a novel seventh mammalian TRP homologue, TRP7, from mouse brain. TRP7 showed abundant RNA expression in the heart, lung, and eye and moderate expression in the brain, spleen, and testis. TRP7 recombinantly expressed in human embryonic kidney cells exhibited distinctive functional features, compared with other TRP homologues. Basal influx activity accompanied by reduction in Ca(2+) release from internal stores was characteristic of TRP7-expressing cells but was by far less significant in cells expressing TRP3, which is structurally the closest to TRP7 in the TRP family. TRP7 induced Ca(2+) influx in response to ATP receptor stimulation at ATP concentrations lower than those necessary for activation of TRP3 and for Ca(2+) release from the intracellular store, which suggests that the TRP7 channel is activated independently of Ca(2+) release. In fact, TRP7 expression did not affect capacitative Ca(2+) entry induced by thapsigargin, whereas TRP7 greatly potentiated Mn(2+) influx induced by diacylglycerols without involvement of protein kinase C. Nystatin-perforated and conventional whole-cell patch clamp recordings from TRP7-expressing cells demonstrated the constitutively activated and ATP-enhanced inward cation currents, both of which were initially blocked and then subsequently facilitated by extracellular Ca(2+) at a physiological concentration. Impairment of TRP7 currents by internal perfusion of the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid revealed an essential role of intracellular Ca(2+) in activation of TRP7, and their potent activation by the diacylglycerol analogue suggests that the TRP7 channel is a new member of diacylglycerol-activated cation channels. Relative permeabilities indicate that TRP7 is slightly selective to divalent cations. Thus, our findings reveal an interesting correspondence of TRP7 to the background and receptor stimulation-induced cation currents in various native systems.  (+info)

Barley (Hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. (71/4482)

Oxalate oxidase (EC 1.2.3.4) catalyses the conversion of oxalate and dioxygen into CO(2) and H(2)O(2). The barley (Hordeum vulgare) seedling root enzyme was purified to homogeneity and shown by metal analysis and EPR spectroscopy to contain Mn(II) at up to 0.80 atom per subunit. The involvement of Mn and neither flavin, Cu nor Fe in the direct conversion of dioxygen to H(2)O(2) makes oxalate oxidase unique. A model of the active site of the holoenzyme based on a homology model of the apoenzyme is proposed.  (+info)

Contents of several inorganic substances in European eel infected and uninfected by Anguillicola crassus (Nematoda). (72/4482)

The content of 5 macroelements and 5 microelements were analyzed using the atomic absorption method in muscle samples of European eels infected and uninfected by Anguillicola crasus. The mean contents of these substances in infected eels were statistically highly significantly lower in Ca, P, Fe, Mn, but only statistically significantly lower in Na, Mg, Zn and Cu as compared to uninfected fishes. These differences are discussed in relation to hematophagus feeding and pathogenity of the parasite.  (+info)