Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. (1/670)

We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  (+info)

Respecified larval proleg and body wall muscles circulate hemolymph in developing wings of Manduca sexta pupae. (2/670)

Most larval external muscles in Manduca sexta degenerate at pupation, with the exception of the accessory planta retractor muscles (APRMs) in proleg-bearing abdominal segment 3 and their homologs in non-proleg-bearing abdominal segment 2. In pupae, these APRMs exhibit a rhythmic 'pupal motor pattern' in which all four muscles contract synchronously at approximately 4 s intervals for long bouts, without externally visible movements. On the basis of indirect evidence, it was proposed previously that APRM contractions during the pupal motor pattern circulate hemolymph in the developing wings and legs. This hypothesis was tested in the present study by making simultaneous electromyographic recordings of APRM activity and contact thermographic recordings of hemolymph flow in pupal wings. APRM contractions and hemolymph flow were strictly correlated during the pupal motor pattern. The proposed circulatory mechanism was further supported by the findings that unilateral ablation of APRMs or mechanical uncoupling of the wings from the abdomen essentially abolished wing hemolymph flow on the manipulated side of the body. Rhythmic contractions of intersegmental muscles, which sometimes accompany the pupal motor pattern, had a negligible effect on hemolymph flow. The conversion of larval proleg and body wall muscles to a circulatory function in pupae represents a particularly dramatic example of functional respecification during metamorphosis.  (+info)

A novel lipoprotein from the hemolymph of the cochineal insect, Dactylopius confusus. (3/670)

A new type of insect lipoprotein was isolated from the hemolymph of the female cochineal insect Dactylopius confusus. The lipoprotein from the cochineal insect hemolymph was found to have a relative molecular mass of 450 000. It contains 48% lipid, mostly diacylglycerol, phospholipids and hydrocarbons. The protein moiety of the lipoprotein consists of two apoproteins of approximately 25 and 22 kDa, both of which are glycosylated. Both apolipoproteins are also found free in the hemolymph, unassociated with any lipid. Purified cochineal apolipoproteins can combine with Manduca sexta lipophorin, if injected together with adipokinetic hormone into M. sexta. This could indicate that the cochineal lipoprotein can function as a lipid shuttle similar to lipophorins of other insects, and that the cochineal insect apolipoproteins have an overall structure similar to insect apolipophorin-III.  (+info)

A molecular trigger of lipid binding-induced opening of a helix bundle exchangeable apolipoprotein. (4/670)

Apolipophorin III (apoLp-III) from the sphinx moth, Manduca sexta, is a helix bundle protein that interacts reversibly with lipoproteins. Its five elongated amphipathic alpha-helices are organized in an antiparallel fashion, with helices 3 and 4 connected by a short 6-residue (PDVEKE) linker helix, termed helix 3'. Upon interaction with lipoproteins, apoLp-III opens to expose a continuous hydrophobic interior. It was postulated that helix bundle opening is preceded by an initiation step wherein helix 3' serves to recognize available lipoprotein surface binding sites. To test this hypothesis, helix 3' was replaced by residues that have a propensity to form a type I beta-turn, NPNG. This mutant apoLp-III was defective in lipoprotein binding assays. To define a more precise mode of interaction, the relevance of the presence of the hydrophobic Val-97 flanked by Asp-96 and Glu-98 was investigated by site-directed mutagenesis. V97N and D96N/V97N/E98Q apoLp-III were unable to compete with wild-type apoLp-III to initiate an interaction with lipoproteins, whereas D96N/E98Q apoLp-III was as competent as wild-type apoLp-III. The results suggest that Val-97 is critical, whereas Asp-96 and Glu-98 are irrelevant for initiating binding to lipoproteins. A model of binding is presented wherein apoLp-III is oriented with the helix 3' end of the molecule juxtaposed to the lipoprotein surface. Recognition of lipoprotein surface hydrophobic defects by Val-97 triggers opening of the helix bundle and facilitates formation of a stable binding interaction.  (+info)

An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta. (5/670)

Insect antennae have a primary function of detecting odors including sex pheromones and plant volatiles. The assumption that genes uniquely expressed in these antennae have an olfactory role has led to the identification of several genes that are integral components of odorant transduction. In the present study, differential display polymerase chain reaction (ddPCR) was used to isolate 25 antennal-specific mRNAs from the male sphinx moth Manduca sexta. Northern blot analyses revealed that one clone, designated G7-9, was antennal-specific and was highly enriched in male antennae relative to female antennae. In situ hybridization indicated that G7-9 expression was restricted to a spatial domain of the olfactory epithelium occupied exclusively by sex-pheromone-sensitive olfactory sensilla. Amino acid homology and phylogenetic analyses identified G7-9 as a glutathione-S-transferase (GST); we have named the full-length clone GST-msolf1. GSTs are known to function primarily in the detoxification of noxious compounds. Spectrophotometric and chromatographic analyses of total GST activity indicate that the endogenous GSTs of male and female antennae can modify trans-2-hexenal, a plant-derived green leaf aldehyde known to stimulate the olfactory system of M. sexta. The restricted localization of GST-msolf1 to sex-pheromone-sensitive sensilla, the fact that the sex pheromone of M. sexta consists of a complex mixture of aldehyde components, and the observation that antennal GSTs can modify an aldehyde odorant suggest that GST-msolf1 may have a role in signal termination. In the light of the more commonly observed role of GSTs in xenobiotic metabolism, we propose that GST-msolf1 may play a dual role of protecting the olfactory system from harmful xenobiotics and inactivating aldehyde odorants, especially components of the M. sexta sex pheromone.  (+info)

A novel insect V-ATPase subunit M9.7 is glycosylated extensively. (6/670)

Plasma membrane V-ATPase isolated from midgut and Malpighian tubules of the tobacco hornworm, Manduca sexta, contains a novel prominent 20-kDa polypeptide. Based on N-terminal protein sequencing, we cloned a corresponding cDNA. The deduced hydrophobic protein consisted of 88 amino acids with a molecular mass of only 9.7 kDa. Immunoblots of the recombinant 9.7-kDa polypeptide, using a monoclonal anti- body to the 20-kDa polypeptide, confirmed that the correct cDNA had been cloned. The 20-kDa polypeptide is glycosylated, as deduced from lectin staining. Treatment with N-glycosidase A resulted in the appearance of two additional protein bands of 16 and 10 kDa which both were immunoreactive to the 20-kDa polypeptide-specific monoclonal antibody. Thus, extensive N-glycosylation of the novel Vo subunit M9.7 accounts for half of its molecular mass observed in SDS-polyacrylamide gel electrophoresis. M9.7 exhibits some similarities to the yeast protein Vma21p which resides in the endoplasmic reticulum and is required for the assembly of the Vo complex. However, as deduced from immunoblots as well as from activities of the V-ATPase and endoplasmic reticulum marker enzymes in different membrane preparations, M9.7 is, in contrast to the yeast polypeptide, a constitutive subunit of the mature plasma membrane V-ATPase of M. sexta.  (+info)

Insect cuticle, an in vivo model of protein trafficking. (7/670)

In the course of this study more than 20 proteins have been isolated from the larval cuticle of Manduca sexta. Synthesis, secretion, transport and accumulation of four particular proteins, representative members of four characteristic groups, were followed during metamorphosis by immunoblot and immuncytochemical methods and are described in detail in this paper. We established that only some of the proteins of the soft cuticle of Lepidopteran larvae are synthesized in epidermal cells at the beginning of the larval stages and are digested during the moulting period (MsCP29). Other proteins (MsCP30/11) are secreted into the cuticle by the epidermal cells in different forms during various developmental stages. Some proteins are secreted apically during the feeding period, but before ecdysis they are then taken up by epidermal cells and transported in a basolateral direction back into the hemolymph and saved in an immunologically intact form by the fat body cells (MsCP12.3). Some cuticle proteins have a non-epidermal origin. They are transported from the hemolymph into the cuticle. Before and during ecdysis these molecules reappear in the hemolymph and are detectable again in the pupal cuticle (MsCP78). Our data prove that the cuticle is not a non-living part of the insect body: it is not only an inert, protective armor, but maintains a continuous and dynamic metabolic connection with the other organs of the organism.  (+info)

Activation of a delayed-early gene encoding MHR3 by the ecdysone receptor heterodimer EcR-B1-USP-1 but not by EcR-B1-USP-2. (8/670)

MHR3, a homolog of the retinoid orphan receptor (ROR), is a transcription factor in the nuclear hormone receptor family that is induced by 20-hydroxyecdysone (20E) in the epidermis of the tobacco hornworm, Manduca sexta. Its 2.7-kb 5' flanking region was found to contain four putative ecdysone receptor response elements (EcREs) and a monomeric (GGGTCA) nuclear receptor binding site. Activation of this promoter fused to a chloramphenicol acetyltransferase (CAT) reporter by 2 micrograms of 20E per ml in Manduca GV1 cells was similar to that of endogenous MHR3, with detectable CAT by 3 h. When the ecdysone receptor B1 (EcR-B1) and Ultraspiracle 1 (USP-1) were expressed at high levels under the control of a constitutive promoter, CAT levels after a 3-h exposure to 20E increased two- to sixfold. In contrast, high expression of EcR-B1 and USP-2 caused little increase in CAT levels in response to 20E. Moreover, expression of USP-2 prevented activation by EcR-B1-USP-1. Deletion experiments showed that the upstream region, including the three most proximal putative EcREs, was responsible for most of the 20E activation, with the EcRE3 at -671 and the adjacent GGGTCA being most critical. The EcRE1 at -342 was necessary but not sufficient for the activational response but was the only one of the three putative EcREs to bind the EcR-B1-USP-1 complex in gel mobility shift assays and was responsible for the silencing action of EcR-B1-USP-1 in the absence of hormone. EcRE2 and EcRE3 each specifically bound other protein(s) in the cell extract, but not EcR and USP, and so are not EcREs in this cellular context. When cell extracts were used, the EcR-B1-USP-2 heterodimer showed no binding to EcRE1, and the presence of excess USP-2 prevented the binding of EcR-B1-USP-1 to this element. In contrast, in vitro-transcribed-translated USP-1 and USP-2 both formed heterodimeric complexes with EcR-B1 that bound ponasterone A with the same Kd (7 x 10(-10) M) and bound to both EcRE1 and heat shock protein 27 EcRE. Thus, factors present in the cell extract appear to modulate the differential actions of the two USP isoforms.  (+info)