Control of ketogenesis from amino acids. IV. Tissue specificity in oxidation of leucine, tyrosine, and lysine. (1/967)

In vitro and in vivo studies were made on the tissue specificity of oxidation of the ketogenic amino acids, leucine, tyrosine, and lysine. In in vitro studies the abilities of slices of various tissues of rats to form 14CO2 from 14C-amino acids were examined. With liver, but not kidney slices, addition of alpha-ketoglutarate was required for the maximum activities with these amino acids. Among the various tissues tested, kidney had the highest activity for lysine oxidation, followed by liver; other tissues showed very low activity. Kidney also had the highest activity for leucine oxidation, followed by diaphragm; liver and adipose tissue had lower activities. Liver had the highest activity for tyrosine oxidation, but kidney also showed considerable activity; other tissues had negligible activity. In in vivo studies the blood flow through the liver or kidney was stopped by ligation of the blood vessels. Then labeled amino acids were injected and recovery of radioactivity in respiratory 14CO2 was measured. In contrast to results with slices, no difference was found in the respiratory 14CO2 when the renal blood vessels were or were not ligated. On the contrary ligation of the hepatic vessels suppressed the oxidations of lysine and tyrosine completely and that of leucine partially. Thus in vivo, lysine and tyrosine seem to be metabolized mainly in the liver, whereas leucine is metabolized mostly in extrahepatic tissues and partly in liver. Use of tissue slices seems to be of only limited value in elucidating the metabolisms of these amino acids.  (+info)

Microbial oxidation and assimilation of propylene. (2/967)

Hydrocarbon-utilizing microorganisms in our culture collection oxidized propylene but could not utilize it as the sole source of carbon and energy. When propane-grown cells of Mycobacterium convulutum were placed on propylene, acrylate, the terminally oxidized, three-carbon unsaturated acid, accumulated. A mixed culture and an axenic culture (strain PL-1) that utilized propylene as the sole source of carbon and energy were isolated from soil. Respiration rates, enzyme assays, fatty acid profiles, and 14CO2 incorporation experiments suggest that both the mixed culture and strain PL-1 oxidize propylene via attack at the double bond, resulting in a C2+C1 cleavage of the molecule.  (+info)

Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation. (3/967)

The effects of various substrates on the concentrations of free amino acids, citric acid cycle intermediates and acylcarnitines were studies in perfused hindquarter of rat in presence of glucose and insulin in order to assess regulatory mechanisms of the level of citric acid cycle intermediates in skeletal muscle. 1. Acetate and acetoacetate effected a significant increase in the level of citrate cycle intermediates and accumulation of acetylcarnitine. These changes were accompanied by a reduction in the level of alanine. The concentration of AMP was significantly elevated. 2. Muscle mitochondria fixed 14CO2 in the presence of pyruvate. The products were identified as malate or citrate when whole and disintegrated mitochondria were used respectively. The fixation was greatly stimulated by acetylcarnitine. 3. Acetylcarnitine inhibited the production of pyruvate from malate by muscle mitochondria. 4. Perfusion with 2-oxoisocaproate and 2-oxoisovalerate promoted increases in the level of citric cycle intermediates, a drop in both alanine and glutamate, and accumulation of branched-chain acylcarnitines. 2-Oxoisocaproate also caused a reduction of alanine released from the muscle. 5. Perfusion with leucine and valine did not change the concentration of citric acid cycle intermediates, but elevated glutamate and still more the concentration of alanine. 6. It is concluded that citric cycle intermediate level in the perfused resting muscle is modified by a) conditions which change the concentration of acetyl-CoA and thereby modify the rate of pyruvate carboxylation and decarboxylation of malate via malic enzyme b) conditions which change the concentration of pyruvate cause changes in alanine and cycle intermediates in the same direction via transamination reactions c) conditions which change the concentrations of 2-oxoacids which are converted to cycle intermediates via oxidation.  (+info)

Metabolism of threo-beta-methylmalate by a soil bacterium. (4/967)

Studies on threo-beta-methylmalate metabolism in a soil bacterium of the genus Bacillus which can utilize threo-beta-methylmalate as a sole carbon source were carried out. When DL-threo-beta-methylmalate was incubated with a cell-free extract of the bacterium, citramalate was found to be formed. Similarly, formation of threo-beta-methylmalate from DL-citramalate was confirmed. These dicarbosylic acids were identified by gas chromatography-mass spectrometry. Examination of inducibility, substrate specificity, and cofactor requirement of the enzymes involved in the reactions showed the existence of two interconversion reactions between the threo-beta-methylmalate and citramalate. One was an interconversion reaction between L-threo-beta-methylmalate and L-citramalate via mesaconate and the other was an interconversion reaction between D-threo-beta-methylmalate and D-citramalate via citraconate. These reactions were both reversible and were catalyzed by distinct and inducible enzymes. It is suggested that the two reactions participate in the catabolism of threo-beta-methylmalate.  (+info)

Metabolism and the triggering of germination of Bacillus megaterium. Concentrations of amino acids, organic acids, adenine nucleotides and nicotinamide nucleotides during germination. (5/967)

A considerable amount of evidence suggests that metabolism of germinants or metabolism stimulated by them is involved in triggering bacterial-spore germination. On the assumption that such a metabolic trigger might lead to relatively small biochemical changes in the first few minutes of germination, sensitive analytical techniques were used to detect any changes in spore components during the L-alanine-triggered germination of Bacillus megaterium KM spores. These experiments showed that no changes in spore free amino acids or ATP occurred until 2-3 min after L-alanine addition. Spores contained almost no oxo acids (pyruvate, alpha-oxoglutarate, oxaloacetate), malate or reduced NAD. These compounds were again not detectable until 2-3 min after addition of germinants. It is suggested, therefore, that metabolism associated with these intermediates is not involved in the triggering of germination of this organism.  (+info)

Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. (6/967)

Two trials were conducted to evaluate the influence of malic acid supplementation on ruminal fermentation. In Trial 1, six Holstein steers (300 kg) with ruminal cannulas were used in a crossover design experiment to study the influence of malic acid (MA) on ruminal metabolism during glucose-induced lactic acidosis. Treatments consisted of a 77% steam-flaked barley-based finishing diet supplemented to provide 0 or 80 g/d of MA. After a 13-d dietary adjustment period, 1 kg of glucose was infused into the rumen 1 h after the morning feeding. Ruminal pH was closely associated (R2 = .70) with ruminal DL-lactate concentration. Malic acid supplementation increased (P < .01) ruminal pH 3 h after the glucose infusion. However, there were no treatment effects (P > .10) on ruminal VFA molar proportions or ruminal and plasma DL-lactate concentrations. In Trial 2, four Holstein steers (150 kg) with cannulas in the rumen and proximal duodenum were used in a crossover design experiment to evaluate the influence of MA supplementation on characteristics of digestion. Treatments consisted of an 81% steam-flaked barley-based finishing diet supplemented to provide 0 or 80 g/d of MA. There were no treatment effects (P > .10) on ruminal and total tract digestion of OM, ADF, starch, and feed N or on ruminal microbial efficiency. Malic acid supplementation increased (P < .05) ruminal pH 2 h after feeding. As with Trial 1, there were no treatment effects (P > .10) on ruminal VFA and DL-lactate concentrations. We conclude that supplementation of high-grain finishing diets with MA may be beneficial in promoting a higher ruminal pH during periods of peak acid production without detrimental effects on ruminal microbial efficiency or starch, fiber, and protein digestion. There were no detectable beneficial effects of MA supplementation on ruminal and plasma lactic acid concentrations in cattle fed high-grain diets.  (+info)

Comparative absorption of calcium sources and calcium citrate malate for the prevention of osteoporosis. (7/967)

Anthropologically speaking, humans were high consumers of calcium until the onset of the Agricultural Age, 10,000 years ago. Current calcium intake is one-quarter to one-third that of our evolutionary diet and, if we are genetically identical to the Late Paleolithic Homo sapiens, we may be consuming a calcium-deficient diet our bodies cannot adjust to by physiologic mechanisms. Meta-analyses of calcium and bone mass studies demonstrate supplementation of 500 to 1500 mg calcium daily improves bone mass in adolescents, young adults, older men, and postmenopausal women. Calcium citrate malate has high bioavailability and thus has been the subject of calcium studies in these populations. Positive effects have been seen in prepubertal girls, adolescents, and postmenopausal women. The addition of trace minerals and vitamin D in separate trials has improved the effect of calcium citrate malate on bone density and shown a reduction of fracture risk.  (+info)

Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. (8/967)

To determine the effects of DL-malate on ruminal metabolism, four steers equipped with ruminal cannulas were fed an 80% rolled grain (75% corn:25% wheat) diet twice daily with a DMI equal to 2.0% of BW (485+/-24.8 kg). DL-Malate was infused into the rumen on two consecutive days in 500 mL of phosphate buffer to provide 0, 27, 54, or 80 g of DL-malate/d. Ruminal pH linearly increased (P < .01) with DL-malate concentration and was greater (P < .01) for DL-malate than for the control steers (6.07 vs 5.77). DL-Malate treatment linearly decreased (P < .10) total VFA and tended to linearly increase (P = .10) acetate concentration. Propionate, butyrate, and L-lactate concentrations and acetate:propionate ratio were not affected (P > .10) by DL-malate. Three finishing studies were conducted to determine the effects of feeding DL-malate on growth rate and feed efficiency. In a 98-d experiment, 33 crossbred steers were randomly allotted in a Calan gate feeding system to three DL-malate levels (0, 40, and 80 g/d). Steers (initial weight = 367+/-4.5 kg) were fed a rolled corn-based diet twice daily. After 84 d on feed, gain efficiency (gain:feed) tended to improve with more DL-malate (linear, P < .10) and was 8.1% greater (P < .05) for DL-malate than for the control. The ADG linearly increased (P < .05) with more DL-malate and was 8.6% greater (P = .10) for DL-malate than for the control. After 98-d on feed, ADG was linearly increased (P = .09) by DL--malate, and the greatest increase occurred with 80 g of DL-malate. In the second performance study, 27 Angus steers were randomly allotted in a Calan gate feeding system to three DL-malate concentrations (0, 60, and 120 g/d). Steers (initial weight = 432+/-4.6 kg) were fed diets used in the first finishing study twice daily, but DL-malate was included during the 10-d step-up period. During the 10-d step-up period, feed efficiency and ADG linearly increased (P = .01) with more DL-malate. DL-Malate had little effect on steer and heifer performance or plasma constituents in a 113-d finishing study. Collectively, these results suggest that feeding DL-malate to cattle consuming high-grain diets alleviates subclinical acidosis, and it improved animal performance in two finishing studies.  (+info)