Cortical visuomotor integration during eye pursuit and eye-finger pursuit. (1/1144)

To elucidate cortical mechanisms of visuomotor integration, we recorded whole-scalp neuromagnetic signals from six normal volunteers while they were viewing a black dot moving linearly at the speed of 4 degrees /sec within a virtual rectangle. The dot changed its direction randomly once every 0.3-2 sec. The subject either (1) fixated a cross in the center of the screen (eye fixation task), (2) followed the moving dot with the eyes (eye pursuit task), or (3) followed the dot with both the eyes and the right index finger (eye-finger pursuit task). Prominent magnetic signals, triggered by the changes of the direction of the dot, were seen in all conditions, but they were clearly enhanced by the tasks and were strongest during the eye-finger pursuit task and over the anterior inferior parietal lobule (aIPL). Source modeling indicated activation of aIPL [Brodmann's area (BA) 40], the posterosuperior parietal lobule (SPL; BA 7), the dorsolateral frontal cortex (DLF; BA 6), and the occipital cortex (BA 18/19). The activation first peaked in the occipital areas, then in the aIPL and DLF, and some 50 msec later in the SPL. Our results suggest that all these areas are involved in visuomotor transformation, with aIPL playing a crucial role in this process.  (+info)

Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles. (2/1144)

1. Recent reports have shown task-related changes in oscillatory activity in the 15-30 Hz range in the sensorimotor cortex of human subjects and monkeys during skilled hand movements. In the monkey these oscillations have been shown to be coherent with oscillatory activity in the electromyographic activity of hand and forearm muscles. 2. In this study we investigated the modulation of oscillations in the electromyogram (EMG) of human volunteers during tasks requiring precision grip of two spring-loaded levers. 3. Two tasks were investigated: in the 'hold' task, subjects were required to maintain a steady grip force (ca 2.1 N or 2.6 N) for 8 s. In the 'ramp' task, there was an initial hold period for 3 s (force ca 2.1 N) followed by a linear increase in grip force over a 2 s period. The task ended with a further steady hold for 3 s at the higher force level (ca 2.6 N). 4. Surface EMGs were recorded from five hand and forearm muscles in 12 subjects. The coherence of oscillatory activity was calculated between each muscle pair. Frequencies between 1 and 100 Hz were analysed. 5. Each subject showed a peak in the coherence spectra in the 15-30 Hz bandwidth during the hold task. This coherence was absent during the initial movement of the levers. During the ramp task the coherence in the 15-30 Hz range was also significantly reduced during the movement phase, and significantly increased during the second hold period, relative to the initial hold. 6. There was coherence between the simultaneously recorded magnetoencephalogram (MEG) and EMG during steady grip in the hold task; this coherence disappeared during the initial lever movement. Using a single equivalent current dipole source model, the coherent cortical activity was localized to the hand region of the contralateral motor cortex. This suggests that the EMG-EMG coherence was, therefore, at least in part, of cortical origin. 7. The results are discussed in terms of a possible role for synchrony in the efficient recruitment of motor units during maintained grip.  (+info)

Coherent cortical and muscle discharge in cortical myoclonus. (3/1144)

There is increasing evidence in man that the cortical drive to motor neurons is rhythmic. This oscillatory drive may be exaggerated in patients with cortical myoclonus. Spectral analysis of surface bipolar EEG and EMG activity was performed in eight such patients. Only three cases had evidence of giant cortical evoked potentials or a cortical correlate on back-averaging at the time of study. In six subjects, significant coherence between contralateral and vertex EEG and EMG was observed in ranges similar to that previously reported for normal subjects (15-30 and 30-60 Hz). Three out of these six subjects also had significant coherence at higher frequencies (up to 175 Hz). All eight patients had a correlate in the cumulant density estimate between EEG and contralateral EMG. EMG lagged EEG by about 14, 25 and 35 ms for the muscles of the forearm, hand and foot, respectively. These delays were estimated from the slope of the phase curves and the timing of the peaks in the cumulant density estimates, and are appropriate for conduction in fast pyramidal pathways. The results provide clear evidence of a cortical drive synchronizing muscle discharge over a broad range of frequencies in patients with cortical myoclonus. Fourier analysis is a promising technique in the diagnosis and investigation of such patients.  (+info)

Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. (4/1144)

Transcranial magnetic stimulation (TMS) has become a promising treatment of affective disorders in humans, yet the neuronal basis of its long-lasting effects in the brain is still unknown. We studied acute and lasting effects of TMS on reactivity of the rat hippocampus to stimulation of the perforant path. Application of TMS to the brain of the anesthetized rat caused a dose-dependent transient increase in population spike (PS) response of the dentate gyrus to perforant path stimulation. In addition, TMS caused a marked decrease in inhibition and an increase in paired-pulse potentiation of reactivity to stimulation of the perforant path. Also, TMS suppressed the ability of fenfluramine (FFA), a serotonin releaser, to potentiate PS response to perforant path stimulation. Chronic TMS did not affect single population spikes but caused an increase in paired-pulse potentiation, which was still evident 3 weeks after the last of seven daily TMS treatments. After chronic TMS, FFA was ineffective in enhancing reactivity to perforant path stimulation, probably because it lost the ability to release serotonin. In addition, the beta adrenergic receptor agonist isoproterenol, which caused an increase in PS in the control rats, failed to do so in the TMS-treated rats. These results indicate that TMS produces a long-term reduction in efficacy of central modulatory systems.  (+info)

The role of the hippocampus in auditory processing studied by event-related electric potentials and magnetic fields in epilepsy patients before and after temporal lobectomy. (5/1144)

To clarify the relationship between the hippocampus and the event-related responses in auditory information processing, we recorded event-related potentials (ERPs) and event-related magnetic fields (ERFs) associated with the auditory oddball paradigm in 12 patients with temporal lobe epilepsy before and after surgical treatment, and in eight age-matched healthy volunteers. Lesions in the patients were hippocampal sclerosis (8), cyst (2), cavernoma (1) and calcified arteriovenous malformation (1), all in the unilateral temporal lobe. Standard temporal lobectomy (8), selective amygdalohippocampectomy (2), selective hippocampectomy (1) and inferior lateral temporal resection (1) were carried out. ERPs were recorded in nine patients before surgery, in all 12 patients after surgery, and in all normal subjects. P300 was maximal at Pz in the patients both before and after surgery, and in normal subjects. The peak latency and amplitude of P300 measured at Pz in the patients either before or after surgery did not differ significantly from those in normal subjects. After surgery, only the amplitude of P300 over the anterior and mid-temporal area on the resected side was attenuated, while it was symmetric before surgery regardless of the side of epileptogenic focus. ERFs were recorded in three patients before surgery and in six normal subjects by using a whole-head neuromagnetometer. ERFs in response to the target stimuli at a latency of approximately 400 ms were recognized at the anterior, middle and posterior lateral channels on each hemisphere (M400). The latency and dipole moments for M400 did not differ significantly between the patients before surgery and the normal subjects. As a result of analysis using the time-varying multidipole model, three dipoles for M400 were estimated in two patients in whom ERFs were available before surgery for the analysis, and in normal subjects: mesial temporal area, superior temporal area and inferior parietal area on each hemisphere. After surgery, in four out of six patients in whom ERFs were recordable, M400 at the anterior temporal channels on the resected side disappeared, and the activity in the affected mesial temporal area was lost. In one patient who underwent inferior lateral temporal resection, M400 waveforms and its sources were preserved in all regions. There were no significant differences in the latency and dipole moments of the unaffected source of M400 before versus after surgery. These results suggest that the hippocampus contributes to the scalp-recorded P300 only at the corresponding anterior temporal region, and does not influence its general waveform and predominant distribution over the scalp.  (+info)

Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. (6/1144)

Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. The anatomic connectivity of the somatosensory system supports the simultaneous participation of widely separated cortical areas in the early processing of sensory input. We recorded evoked neuromagnetic responses noninvasively from human primary (SI) and secondary (SII) somatosensory cortices to unilateral median nerve stimulation. Brief current pulses were applied repetitively to the median nerve at the wrist at 2 Hz for 800-1,500 trials. A single pulse was omitted from the train at random intervals (15% of omissions). We observed synchronized neuronal population activity in contralateral SII area 20-30 ms after stimulation, coincident in time with the first responses generated in SI. Both contra- and ipsilateral SII areas showed prominent activity at 50-60 ms with an average delay of 13 ms for ipsilateral compared with contralateral responses. The refractory behavior of the early SII responses to the omissions differed from those observed at approximately 100 ms, indicative of distinct neuronal assemblies responding at each latency. These results indicate that SII and/or associated cortices in parietal operculum, often viewed as higher-order processing areas for somatosensory perception, are coactivated with SI during the early processing of intermittent somatosensory input.  (+info)

Cortical auditory signal processing in poor readers. (7/1144)

Magnetoencephalographic responses recorded from auditory cortex evoked by brief and rapidly successive stimuli differed between adults with poor vs. good reading abilities in four important ways. First, the response amplitude evoked by short-duration acoustic stimuli was stronger in the post-stimulus time range of 150-200 ms in poor readers than in normal readers. Second, response amplitude to rapidly successive and brief stimuli that were identical or that differed significantly in frequency were substantially weaker in poor readers compared with controls, for interstimulus intervals of 100 or 200 ms, but not for an interstimulus interval of 500 ms. Third, this neurological deficit closely paralleled subjects' ability to distinguish between and to reconstruct the order of presentation of those stimulus sequences. Fourth, the average distributed response coherence evoked by rapidly successive stimuli was significantly weaker in the beta- and gamma-band frequency ranges (20-60 Hz) in poor readers, compared with controls. These results provide direct electrophysiological evidence supporting the hypothesis that reading disabilities are correlated with the abnormal neural representation of brief and rapidly successive sensory inputs, manifested in this study at the entry level of the cortical auditory/aural speech representational system(s).  (+info)

Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG). (8/1144)

The aim of this study was to use the technique of magnetoencephalography (MEG) to determine the effects of strabismic amblyopia on the processing of spatial information within the occipital cortex of humans. We recorded evoked magnetic responses to the onset of a chromatic (red/green) sinusoidal grating of periodicity 0.5-4.0 c deg-1 using a 19-channel SQUID-based neuromagnetometer. Evoked responses were recorded monocularly on six amblyopes and six normally-sighted controls, the stimuli being positioned near the fovea in the lower right visual field of each observer. For comparison, the spatial contrast sensitivity function (CSF) for the detection of chromatic gratings was measured for one amblyope and one control using a two alternate forced-choice psychophysical procedure. We chose red/green sinusoids as our stimuli because they evoke strong magnetic responses from the occipital cortex in adult humans (Fylan, Holliday, Singh, Anderson & Harding. (1997). Neuroimage, 6, 47-57). Magnetic field strength was plotted as a function of stimulus spatial frequency for each eye of each subject. Interocular differences were only evident within the amblyopic group: for stimuli of 1-2 c deg-1, the evoked responses had significantly longer latencies and reduced amplitudes through the amblyopic eye (P < 0.05). Importantly, the extent of the deficit was uncorrelated with either Snellen acuity or contrast sensitivity. Localization of the evoked responses was performed using a single equivalent current dipole model. Source localizations, for both normal and amblyopic subjects, were consistent with neural activity at the occipital pole near the V1/V2 border. We conclude that MEG is sensitive to the deficit in cortical processing associated with human amblyopia, and can be used to make quantitative neurophysiological measurements. The nature of the cortical deficit is discussed.  (+info)