Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. (1/3676)

We have generated mice with a cell type-specific disruption of the Stat3 gene in macrophages and neutrophils. The mutant mice are highly susceptible to endotoxin shock with increased production of inflammatory cytokines such as TNF alpha, IL-1, IFN gamma, and IL-6. Endotoxin-induced production of inflammatory cytokines is augmented because the suppressive effects of IL-10 on inflammatory cytokine production from macrophages and neutrophils are completely abolished. The mice show a polarized immune response toward the Th1 type and develop chronic enterocolitis with age. Taken together, Stat3 plays a critical role in deactivation of macrophages and neutrophils mainly exerted by IL-10.  (+info)

Activation of alveolar macrophages in lung injury associated with experimental acute pancreatitis is mediated by the liver. (2/3676)

OBJECTIVE: To evaluate (1) whether alveolar macrophages are activated as a consequence of acute pancreatitis (AP), (2) the implication of inflammatory factors released by these macrophages in the process of neutrophil migration into the lungs observed in lung injury induced by AP, and (3) the role of the liver in the activation of alveolar macrophages. SUMMARY BACKGROUND DATA: Acute lung injury is the extrapancreatic complication most frequently associated with death and complications in severe AP. Neutrophil infiltration into the lungs seems to be related to the release of systemic and local mediators. The liver and alveolar macrophages are sources of mediators that have been suggested to participate in the lung damage associated with AP. METHODS: Pancreatitis was induced in rats by intraductal administration of 5% sodium taurocholate. The inflammatory process in the lung and the activation of alveolar macrophages were investigated in animals with and without portocaval shunting 3 hours after AP induction. Alveolar macrophages were obtained by bronchoalveolar lavage. The generation of nitric oxide, leukotriene B4, tumor necrosis factor-alpha, and MIP-2 by alveolar macrophages and the chemotactic activity of supernatants of cultured macrophages were evaluated. RESULTS: Pancreatitis was associated with increased infiltration of neutrophils into the lungs 3 hours after induction. This effect was prevented by the portocaval shunt. Alveolar macrophages obtained after induction of pancreatitis generated increased levels of nitric oxide, tumor necrosis factor-alpha, and MIP-2, but not leukotriene B4. In addition, supernatants of these macrophages exhibited a chemotactic activity for neutrophils when instilled into the lungs of unmanipulated animals. All these effects were abolished when portocaval shunting was carried out before induction of pancreatitis. CONCLUSION: Lung damage induced by experimental AP is associated with alveolar macrophage activation. The liver mediates the alveolar macrophage activation in this experimental model.  (+info)

Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. (3/3676)

Nigrostriatal dopaminergic neurons undergo sprouting around the margins of a striatal wound. The mechanism of this periwound sprouting has been unclear. In this study, we have examined the role played by the macrophage and microglial response that follows striatal injury. Macrophages and activated microglia quickly accumulate after injury and reach their greatest numbers in the first week. Subsequently, the number of both cell types declines rapidly in the first month and thereafter more slowly. Macrophage numbers eventually cease to decline, and a sizable group of these cells remains at the wound site and forms a long-term, highly activated resident population. This population of macrophages expresses increasing amounts of glial cell line-derived neurotrophic factor mRNA with time. Brain-derived neurotrophic factor mRNA is also expressed in and around the wound site. Production of this factor is by both activated microglia and, to a lesser extent, macrophages. The production of these potent dopaminergic neurotrophic factors occurs in a similar spatial distribution to sprouting dopaminergic fibers. Moreover, dopamine transporter-positive dopaminergic neurites can be seen growing toward and embracing hemosiderin-filled wound macrophages. The dopaminergic sprouting that accompanies striatal injury thus appears to result from neurotrophic factor secretion by activated macrophages and microglia at the wound site.  (+info)

Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola. (4/3676)

We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as observed in periodontal diseases. An enriched lipoprotein fraction (dLPP) from T. denticola ATCC 35404 obtained upon extraction of the treponemes with Triton X-114 was found to stimulate the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), and interleukin-1 (IL-1) by mouse macrophages in a dose-dependent manner. Induction of NO by dLPP was at 25% of the levels obtained by Salmonella typhosa lipopolysaccharide (LPS) at similar concentrations, while IL-1 was produced at similar levels by both inducers. dLPP-mediated macrophage activation was unaffected by amounts of polymyxin B that neutralized the induction produced by S. typhosa LPS. dLPP also induced NO and TNF-alpha secretion from macrophages isolated from endotoxin-unresponsive C3H/HeJ mice to an extent similar to the stimulation produced in endotoxin-responsive mice. Purified T. denticola LOS also produced a concentration-dependent activation of NO and TNF-alpha in LPS-responsive and -nonresponsive mouse macrophages. However, macrophage activation by LOS was inhibited by polymyxin B. These results suggest that T. denticola lipoproteins and LOS may play a role in the inflammatory processes that characterize periodontal diseases.  (+info)

Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells that display short-term interleukin 1alpha expression. (5/3676)

Expression of cytokines in malignant cells represents a novel approach for therapeutic treatment of tumors. Previously, we demonstrated the immunostimulatory effectiveness of interleukin 1alpha (IL-1alpha) gene transfer in experimental fibrosarcoma tumors. Here, we report the antitumor and immunotherapeutic effects of short-term expression of IL-1alpha by malignant T lymphoma cells. Activation in culture of T lymphoma cells with lipopolysaccharide-stimulated macrophages induces the expression of IL-1alpha. The short-term expression of IL-1alpha persists in the malignant T cells for a few days (approximately 3-6 days) after termination of the in vitro activation procedure and, thus, has the potential to stimulate antitumor immune responses in vivo. As an experimental tumor model, we used the RO1 invasive T lymphoma cell line. Upon i.v. inoculation, these cells invade the vertebral column and compress the spinal cord, resulting in hind leg paralysis and death of the mice. Activated RO1 cells, induced to express IL-1alpha in a short-term manner, manifested reduced tumorigenicity: approximately 75% of the mice injected with activated RO1 cells remained tumor free. IL-1 was shown to be essential for the eradication of activated T lymphoma cells because injection of activated RO1 cells together with IL-1-specific inhibitors, i.e., the IL-1 receptor antagonist or the M 20 IL-1 inhibitor, reversed reduced tumorigenicity patterns and led to progressive tumor growth and death of the mice. Furthermore, activated RO1 cells could serve as a treatment by intervening in the growth of violent RO1 cells after tumor take. Thus, when activated RO1 cells were injected 6 or 9 days after the inoculation of violent cells, mortality was significantly reduced. IL-1alpha, in its unique membrane-associated form, in addition to its cytosolic and secreted forms, may represent a focused adjuvant for potentiating antitumor immune responses at low levels of expression, below those that are toxic to the host. Further assessment of the immunotherapeutic potential of short-term expression of IL-1alpha in activated tumor cells may allow its improved application in the treatment of malignancies.  (+info)

Cyclophilin C-associated protein: a normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo. (6/3676)

Mouse cyclophilin C-associated protein (CyCAP) is a member of the scavenger-receptor cysteine-rich domain superfamily and is 69% identical to the human Mac-2 binding protein. Here, we show that CyCAP is a widely expressed secreted glycoprotein that modulates the host response to endotoxin. Gene-targeted CyCAP-deficient mice are more sensitive to the lethal effects of endotoxin. In response to endotoxin, CyCAP-deficient mice overproduced interleukin 12 and interferon-gamma systemically and tumor necrosis factor alpha locally; these are proinflammatory molecules that also promote T helper 1 responses. Furthermore, macrophages stimulated in vitro with endotoxin in serum deficient in CyCAP secreted more tumor necrosis factor alpha, supporting the proposal that CyCAP specifically down-modulates endotoxin signaling.  (+info)

Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. (7/3676)

The 85-kDa cytosolic PLA2 (cPLA2) mediates agonist-induced arachidonic acid release in many cell models, including mouse peritoneal macrophages. cPLA2 is regulated by an increase in intracellular calcium, which binds to an amino-terminal C2 domain and induces its translocation to the nuclear envelope and endoplasmic reticulum. Phosphorylation of cPLA2 on S505 by mitogen-activated protein kinases (MAPK) also contributes to activation. In macrophages, zymosan induces a transient increase in intracellular calcium and activation of MAPK, which together fully activate cPLA2 and synergistically promote arachidonic acid release. There are alternative pathways for regulating cPLA2 in macrophages because PMA and okadaic acid induce arachidonic acid release without increasing calcium. The baculovirus expression system is a useful model to study cPLA2 activation. Sf9 cells expressing cPLA2 release arachidonic acid to either A23187 or okadaic acid. cPLA2 is phosphorylated on multiple sites in Sf9 cells, and phosphorylation of S727 is preferentially induced by okadaic acid. However, the phosphorylation sites are non-essential and only S505 phosphorylation partially contributes to cPLA2 activation in this model. Although okadaic acid does not increase intracellular calcium in Sf9 cells, calcium binding by the C2 domain is necessary for arachidonic acid release. A23187 and okadaic acid activate cPLA2 by different mechanisms, yet both induce translocation to the nuclear envelope in Sf9 cells. The results demonstrate that alternative regulatory pathways can lead to cPLA2 activation and arachidonic acid release.  (+info)

Lipopolysaccharides (LPS) of oral black-pigmented bacteria induce tumor necrosis factor production by LPS-refractory C3H/HeJ macrophages in a way different from that of Salmonella LPS. (8/3676)

Some lipopolysaccharide (LPS) preparations from S- or R-form members of the family Enterobacteriaceae and oral black-pigmented bacteria (Porphyromonas gingivalis and Prevotella intermedia) are known to activate LPS-refractory C3H/HeJ macrophages. When contaminating proteins are removed from R-form LPS of Enterobacteriaceae by repurification, however, this ability is lost. In the present study, we investigated the capacity of LPS from P. gingivalis, P. intermedia, Salmonella minnesota, and Salmonella abortusequi to induce production of tumor necrosis factor (TNF) in gamma interferon-primed C3H/HeJ macrophages before and after repurification. P. abortusequi S-LPS was fractionated by centrifugal partition chromatography into two LPS forms: SL-LPS, having homologous long O-polysaccharide chains, and SS-LPS having short oligosaccharide chains. Prior to repurification, all LPS forms except SL-LPS induced TNF production in both C3H/HeJ and C3H/HeN macrophages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that repurification removed contaminating protein from the preparations, and repurified SS-LPS and S. minnesota Ra-LPS no longer stimulated TNF production in C3H/HeJ macrophages, although C3H/HeN macrophages remained responsive. In contrast, repurified oral bacterial LPS retained the capacity to induce TNF production in C3H/HeJ macrophages. Oral bacterial LPS preparations also were not antagonized by excess inactive, repurified SL-LPS; Ra-LPS; Rhodobacter sphaeroides lipid A, a competitive LPS antagonist, or paclitaxel, an LPS agonist, and they were comparatively resistant to polymyxin B treatment. Nevertheless, oral bacterial LPS was less toxic to D-galactosamine-treated C3H/HeN mice than was LPS from Salmonella. These findings indicate that the active molecule(s) and mode of action of LPS from P. gingivalis and P. intermedia are quite different from those of LPS from Salmonella.  (+info)