Molecular and evolutionary analysis of Borrelia burgdorferi 297 circular plasmid-encoded lipoproteins with OspE- and OspF-like leader peptides. (1/1720)

We previously described two OspE and three OspF homologs in Borrelia burgdorferi 297 (D. R. Akins, S. F. Porcella, T. G. Popova, D. Shevchenko, S. I. Baker, M. Li, M. V. Norgard, and J. D. Radolf, Mol. Microbiol. 18:507-520, 1995; D. R. Akins, K. W. Bourell, M. J. Caimano, M. V. Norgard, and J. D. Radolf, J. Clin. Investig. 101:2240-2250, 1998). In this study, we characterized four additional lipoproteins with OspE/F-like leader peptides (Elps) and demonstrated that all are encoded on plasmids homologous to cp32 and cp18 from the B31 and N40 strains, respectively. Statistical analysis of sequence similarities using the binary comparison algorithm revealed that the nine lipoproteins from strain 297, as well as the OspE, OspF, and Erp proteins from the N40 and B31 strains, fall into three distinct families. Based upon the observation that these lipoproteins all contain highly conserved leader peptides, we now propose that the ancestors of each of the three families arose from gene fusion events which joined a common N terminus to unrelated proteins. Additionally, further sequence analysis of the strain 297 circular plasmids revealed that rearrangements appear to have played an important role in generating sequence diversity among the members of these three families and that recombinational events in the downstream flanking regions appear to have occurred independently of those within the lipoprotein-encoding genes. The association of hypervariable regions with genes which are differentially expressed and/or subject to immunological pressures suggests that the Lyme disease spirochete has exploited recombinatorial processes to foster its parasitic strategy and enhance its immunoevasiveness.  (+info)

Low rates of ehrlichiosis and Lyme borreliosis in English farmworkers. (2/1720)

To determine the occupational significance of tick-borne zoonoses we sought serological evidence of Lyme borreliosis, human monocytic ehrlichiosis (HME) and human granulocytic ehrlichiosis (HGE) in a representative sample of farmworkers. Although around 20% reported ticks on their domestic and companion animals, few (< 2% per year) reported being bitten by ticks. Seroprevalence of Lyme borreliosis (0.2%), HME (0.2%) and HGE (1.5%) was low. Those seropositive for HGE were no more likely to report tick bites nor more likely to report ticks on their animals. This study provides evidence that farmworkers in England are exposed to tick-borne zoonoses but that they are uncommon. Since the severity of these diseases is linked to delays in diagnosis and treatment, clinicians should be aware of these diagnoses in patients from rural communities, with or without a self-reported history of tick bite.  (+info)

Evaluation of two-test serodiagnostic method for early Lyme disease in clinical practice. (3/1720)

The Centers for Disease Control and Prevention (CDC) recommend a two-test approach for the serodiagnosis of Lyme disease (LD), with EIA testing followed by Western immunoblotting (WB) of EIA-equivocal and -positive specimens. This approach was compared with a simplified two-test approach (WB of EIA equivocals only) and WB alone for early LD. Case-patients with erythema migrans (EM) rash >/=5 cm were recruited from three primary-care practices in LD-endemic areas to provide acute- (S1) and convalescent-phase serum specimens (S2). The simplified approach had the highest sensitivity when either S1 or S2 samples were tested, nearly doubling when S2 were tested, while decreasing slightly for the other two approaches. Accordingly, the simplified approach had the lowest negative likelihood ratio for either S1 or S2. For early LD with EM, the simplified approach performed well and was less costly than the other testing approaches since less WB is required.  (+info)

A reanalysis of IgM Western blot criteria for the diagnosis of early Lyme disease. (4/1720)

A two-step approach for diagnosis of Lyme disease, consisting of an initial EIA followed by a confirmatory Western immunoblot, has been advised by the Centers for Disease Control and Prevention (CDC). However, these criteria do not examine the influence of the prior probability of Lyme disease in a given patient on the predictive value of the tests. By using Bayesian analysis, a mathematical algorithm is proposed that computes the probability that a given patient's Western blot result represents Lyme disease. Assuming prior probabilities of early Lyme disease of 1%-10%, the current CDC minimum criteria for IgM immunoblot interpretation yield posttest probabilities of 4%-32%. The value of the two-step approach for diagnosis of early Lyme disease may be limited in populations at lower risk of disease or when patients present with atypical signs and symptoms.  (+info)

Interaction of Borrelia burgdorferi with peripheral blood fibrocytes, antigen-presenting cells with the potential for connective tissue targeting. (5/1720)

BACKGROUND: Borrelia Burgdorferi has a predilection for collagenous tissue and can interact with fibronectin and cellular collagens. While the molecular mechanisms of how B. burgdorferi targets connective tissues and causes arthritis are not understood, the spirochetes can bind to a number of different cell types, including fibroblasts. A novel circulating fibroblast-like cell called the peripheral blood fibrocyte has recently been described. Fibrocytes express collagen types I and III as well as fibronectin. Besides playing a role in wound healing, fibrocytes have the potential to target to connective tissue and the functional capacity to recruit, activate, and present antigen to CD4(+) T cells. MATERIALS AND METHODS: Rhesus monkey fibrocytes were isolated and characterized by flow cytometry. B. burgdorferi were incubated with human or monkey fibrocyte cultures in vitro and the cellular interactions analyzed by light and electron microscopy. The two strains of B. burgdorferi studied included JD1, which is highly pathogenic for monkeys, and M297, which lacks the cell surface OspA and OspB proteins. RESULTS: In this study, we demonstrate that B. burgdorferi binds to both human and monkey (rhesus) fibrocytes in vitro. This process does not require OspA or OspB. In addition, the spirochetes are not phagocytosed but are taken into deep recesses of the cell membrane, a process that may protect them from the immune system. CONCLUSIONS: This interaction between B. burgdorferi and peripheral blood fibrocytes provides a potential explanation for the targeting of spirochetes to joint connective tissue and may contribute to the inflammatory process in Lyme arthritis.  (+info)

Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faeroe Islands. (6/1720)

This is the first report on the isolation of Lyme disease Borrelia from seabirds on the Faeroe Islands and the characteristics of its enzootic cycle. The major components of the Borrelia cycle include the puffin (Fratercula arctica) as the reservoir and Ixodes uriae as the vector. The importance of this cycle and its impact on the spread of human Lyme borreliosis have not yet been established. Borrelia spirochetes isolated from 2 of 102 sampled puffins were compared to the borreliae previously obtained from seabird ticks, I. uriae. The rrf-rrl intergenic spacer and the rrs and the ospC genes were sequenced and a series of phylogenetic trees were constructed. Sequence data and restriction fragment length polymorphism analysis grouped the strains together with Borrelia garinii. In a seroepidemiological survey performed with residents involved in puffin hunting on the Faeroe Islands, 3 of 81 serum samples were found to be positive by two commonly used clinical tests: a flagellin-based enzyme-linked immunosorbent assay (ELISA) and Western blotting. These three positive serum samples also had high optical density values in a whole-cell ELISA. The finding of seropositive Faeroe Islanders who are regularly exposed to I. uriae indicate that there may be a transfer of B. garinii by this tick species to humans.  (+info)

Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR. (7/1720)

The quantity of Borrelia burgdorferi organisms in tissue samples is an important determinant for infection studies in the mouse model of Lyme disease. This report presents the development of a rapid and sensitive external-standard-based PCR assay for the absolute quantification of B. burgdorferi in mouse tissue samples. The assay uses a double-stranded DNA dye to continuously monitor product formation and in less than an hour was able to quantify samples ranging up to 6 log units in concentration. The PCR efficiencies of the sample and the standard were matched by using a standard composed of purified B. burgdorferi chromosome mixed with tissue-matched mouse genome lacking bacterial DNA. Normalization of B. burgdorferi quantities to the mouse nidogen gene allowed comparison of B. burgdorferi numbers in samples isolated from different tissues and strains. PCR analysis of the chromosomal gene recA in cultured B. burgdorferi was consistent with a single recA per bacterium. The parameters defined in this assay should be applicable to quantification of other organisms, even infectious agents for which no ready source of DNA standard is available. In summary, this report presents a rapid external-standard-based PCR method for the quantification of B. burgdorferi in mouse DNA samples.  (+info)

Strain variation in glycosaminoglycan recognition influences cell-type-specific binding by lyme disease spirochetes. (8/1720)

Lyme disease, a chronic multisystemic disorder that can affect the skin, heart, joints, and nervous system is caused by Borrelia burgdorferi sensu lato. Lyme disease spirochetes were previously shown to bind glycosaminoglycans (GAGs). In the current study, the GAG-binding properties of eight Lyme disease strains were determined. Binding by two high-passage HB19 derivatives to Vero cells could not be inhibited by enzymatic removal of GAGs or by the addition of exogenous GAG. The other six strains, which included a different high-passage HB19 derivative (HB19 clone 1), were shown to recognize both heparan sulfate and dermatan sulfate in cell-binding assays, but the relative efficiency of binding to these two GAGs varied among the strains. Strains N40, CA20-2A, and PBi bound predominantly to heparan sulfate, PBo bound both heparan sulfate and dermatan sulfate roughly equally, and VS461 and HB19 clone 1 recognized primarily dermatan sulfate. Cell binding by strain HB19 clone 1 was inhibited better by exogenous dermatan sulfate than by heparin, whereas heparin was the better inhibitor of binding by strain N40. The GAG-binding preference of a Lyme disease strain was reflected in its cell-type-specific binding. Strains that recognized predominantly heparan sulfate bound efficiently to both C6 glioma cells and EA-Hy926 cells, whereas strains that recognized predominantly dermatan sulfate bound well only to the glial cells. The effect of lyase treatment of these cells on bacterial binding was consistent with the model that cell-type-specific binding was a reflection of the GAG-binding preference. We conclude that the GAG-binding preference varies with the strain of Lyme disease spirochete and that this variation influences cell-type-specific binding in vitro.  (+info)