Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. (17/24796)

Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.  (+info)

Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. (18/24796)

Among members of the tumor necrosis factor receptor (TNFR) superfamily, 4-1BB, CD27, and glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) share a striking homology in the cytoplasmic domain. Here we report the identification of a new member, activation-inducible TNFR family member (AITR), which belongs to this subfamily, and its ligand. The receptor is expressed in lymph node and peripheral blood leukocytes, and its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with anti-CD3/CD28 monoclonal antibodies or phorbol 12-myristate 13-acetate/ionomycin. AITR associates with TRAF1 (TNF receptor-associated factor 1), TRAF2, and TRAF3, and induces nuclear factor (NF)-kappaB activation via TRAF2. The ligand for AITR (AITRL) was found to be an undescribed member of the TNF family, which is expressed in endothelial cells. Thus, AITR and AITRL seem to be important for interactions between activated T lymphocytes and endothelial cells.  (+info)

Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. (19/24796)

The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  (+info)

CD28 ligation induces tyrosine phosphorylation of Pyk2 but not Fak in Jurkat T cells. (20/24796)

Protein tyrosine kinases are critical for the function of CD28 in T cells. We examined whether the tyrosine kinases Pyk2 and Fak (members of the focal adhesion kinase family) are involved in CD28 signaling. We found that ligating CD28 in Jurkat T cells rapidly increases the tyrosine phosphorylation of Pyk2 but not of Fak. Paxillin, a substrate for Pyk2 and Fak, was not tyrosine-phosphorylated after CD28 ligation. CD28-induced tyrosine phosphorylation of Pyk2 was markedly reduced in the absence of external Ca2+. Previous studies have shown that the T cell antigen receptor (TCR) induces tyrosine phosphorylation of Pyk2. In this report, the concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of Pyk2; however, the extent of phosphorylation by both receptors was equivalent to the sum of that induced by each receptor alone. The Syk/Zap inhibitor piceatannol blocked CD28, and TCR induced tyrosine phosphorylation of Pyk2, suggesting that Syk/Zap is involved in Pyk2 phosphorylation. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin blocked TCR- but not CD28-induced phosphorylation of Pyk2, suggesting that CD28 and TCR activate distinct pathways to induce tyrosine phosphorylation of Pyk2. Notably, depleting phorbol 12-myristate 13-acetate-sensitive protein kinase C did not block CD28- and CD3-induced tyrosine phosphorylation of Pyk2. These data provide evidence for the involvement of Pyk2 in the CD28 signaling cascade and suggest that neither Fak nor paxillin is involved in the signaling pathways of CD28.  (+info)

Matrix valency regulates integrin-mediated lymphoid adhesion via Syk kinase. (21/24796)

Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.  (+info)

Identification of AUF-1 ligands reveals vast diversity of early response gene mRNAs. (22/24796)

Cell activation is associated with diverse and widespread changes in gene expression at both the transcriptional and post-transcriptional levels. AUF1 is a recently described cytoplasmic protein which likely participates in the post-transcriptional regulation (PTR) of AU-rich (ARE) mRNAs including those coding for cytokines and proto-oncogenes. Individual mRNAs subject to AUF1-mediated PTR can be predicted if AREs are present or the mRNA in question interacts in vitro or in vivo with AUF1. However, there are few, if any, general approaches for characterizing the overall repertoire of mRNAs subject to PTR by AUF1. In an effort to identify these mRNAs, we incubated total mRNA from mitogen-activated peripheral blood mono-nuclear cells (PBMCs) with AUF1 in vitro. AUF1-mRNA complexes were retarded on membranes, bound mRNAs eluted with high salt, and either used to generate a cDNA library or rebound to AUF1 a second or third time prior to elution and cDNA library construction. We have obtained partial nucleotide sequences from 130 clones which shows that the AUF1 selected libraries are rich in mRNAs containing 3' untranslated region AREs including a large number of early response gene cDNAs. As a test of the validity of this method, we also show that a randomly selected, novel mRNA contained in the library is stabilized upon cell activation.  (+info)

Free energy landscapes of encounter complexes in protein-protein association. (23/24796)

We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.  (+info)

Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). (24/24796)

A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  (+info)