A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. (1/324)

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of beta-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.  (+info)

Ethanol inhibits L1-mediated neurite outgrowth in postnatal rat cerebellar granule cells. (2/324)

The neuropathology of the effects of ethanol on the developing central nervous system are similar to those of patients with mutations in L1, a neural cell adhesion molecule. This observation suggests that inhibition of L1 plays a role in the pathogenesis of alcohol-related neurodevelopmental disorders. Here we examine the effects of ethanol on L1 homophilic binding and on L1-mediated neurite outgrowth. Ethanol had no effect on cell adhesion or aggregation in a myeloma cell line expressing full-length human L1. In contrast, the rate of L1-mediated neurite outgrowth of rat postnatal day 6 cerebellar granule cells grown on a substratum of NgCAM, the chick homologue of L1, was inhibited by 48.6% in the presence of ethanol with a half-maximal concentration of 4.7 mM. The same effect was found with soluble L1-Fc, thus showing that the inhibitory effect is not dependent on cell adhesion. In contrast, neither laminin nor N-cadherin-mediated neurite outgrowth was inhibited by physiologic concentrations of ethanol. We conclude that one mechanism of ethanol's toxicity to the developing central nervous system may be the inhibition of L1-mediated neurite outgrowth.  (+info)

Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. (3/324)

In humans, mutations in the L1 cell adhesion molecule are associated with a neurological syndrome termed CRASH, which includes corpus callosum agenesis, mental retardation, adducted thumbs, spasticity, and hydrocephalus. A mouse model with a null mutation in the L1 gene (Cohen et al., 1997) was analyzed for brain abnormalities by Nissl and Golgi staining and immunocytochemistry. In the motor, somatosensory, and visual cortex, many pyramidal neurons in layer V exhibited undulating apical dendrites that did not reach layer I. The hippocampus of L1 mutant mice was smaller than normal, with fewer pyramidal and granule cells. The corpus callosum of L1-minus mice was reduced in size because of the failure of many callosal axons to cross the midline. Enlarged ventricles and septal abnormalities were also features of the mutant mouse brain. Immunoperoxidase staining showed that L1 was abundant in developing neurons at embryonic day 18 (E18) in wild-type cerebral cortex, hippocampus, and corpus callosum and then declined to low levels with maturation. In the E18 cortex, L1 colocalized with microtubule-associated protein 2, a marker of dendrites and somata. These new findings suggest new roles for L1 in the mechanism of cortical dendrite differentiation, as well as in guidance of callosal axons and regulation of hippocampal development. The phenotype of the L1 mutant mouse indicates that it is a potentially valuable model for the human CRASH syndrome.  (+info)

Metalloproteinase-mediated release of the ectodomain of L1 adhesion molecule. (4/324)

The L1 adhesion molecule is an approx. 200-220 kDa type I membrane glycoprotein belonging to the immunoglobulin (Ig) superfamily. L1 can bind in a homotypic fashion and was shown to support integrin-mediated binding via RGDs in the 6th Ig-like domain. In addition to its cell-surface expression, L1 can occur in the extracellular matrix (ECM). Here we demonstrate that L1 is constitutively released from the cell surface by membrane-proximal cleavage. L1 shed from B16F10 melanoma cells remains intact and can serve as substrate for integrin-mediated cell adhesion and migration. The release of L1 occurs in mouse and human cells and is blocked by the metalloproteinase inhibitor TAPI (Immunex compound 3). This compound has been shown previously to block release of L-selectin and TNF-alpha which is mediated by the membrane-bound metalloproteinase TNF-alpha converting enzyme (TACE). Using CHO cells that are low in TACE expression and do not release L-selectin we demonstrate that L1 release is distinct from L-selectin shedding. We propose that cell-surface release may be necessary for the conversion of L1 from a membrane into an ECM protein.  (+info)

High prevalence of NSAID enteropathy as shown by a simple faecal test. (5/324)

BACKGROUND: The diagnosis of non-steroidal anti-inflammatory drug (NSAID) induced enteropathy is difficult, requiring enteroscopy or the use of four day faecal excretion of (111)In labelled white cells. AIMS: To assess faecal calprotectin (a non-degraded neutrophil cytosolic protein) as a method for diagnosing NSAID enteropathy. METHODS: Single stool faecal calprotectin concentrations were compared with the four day faecal excretion of (111)In labelled white cells in 47 patients taking NSAIDs. The prevalence and severity of NSAID enteropathy was assessed using this method in 312 patients (192 with rheumatoid arthritis, 65 with osteoarthritis, 55 with other conditions) taking 18 different NSAIDs. RESULTS: The four day faecal excretion of (111)In white cells correlated significantly with faecal calprotectin concentrations. In the group of 312 patients on NSAIDs faecal calprotectin concentrations were significantly higher than in controls, the prevalence of NSAID enteropathy being 44%. The prevalence and severity of NSAID enteropathy was independent of the particular type or dose of NSAID being taken or other patient variables. CONCLUSIONS: Assay of faecal calprotectin provides a simple practical method for diagnosing NSAID enteropathy in man. Forty four per cent of patients receiving these drugs had NSAID induced enteropathy when assessed by this technique; 20% of these had comparable levels of inflammation to that previously reported in patients with inflammatory bowel disease.  (+info)

Integrin and neurocan binding to L1 involves distinct Ig domains. (6/324)

The cell adhesion molecule L1, a 200-220-kDa type I membrane glycoprotein of the Ig superfamily, mediates many neuronal processes. Originally studied in the nervous system, L1 is expressed by hematopoietic and many epithelial cells, suggesting a more expanded role. L1 supports homophilic L1-L1 and integrin-mediated cell binding and can also bind with high affinity to the neural proteoglycan neurocan; however, the binding site is unknown. We have dissected the L1 molecule and investigated the cell binding ability of Ig domains 1 and 6. We report that RGD sites in domain 6 support alpha5beta1- or alphavbeta3-mediated integrin binding and that both RGD sites are essential. Cooperation of RGD sites with neighboring domains are necessary for alpha(5)beta(1). A T cell hybridoma and activated T cells could bind to L1 in the absence of RGDs. This binding was supported by Ig domain 1 and mediated by cell surface-exposed neurocan. Lymphoid and brain-derived neurocan were structurally similar. We also present evidence that a fusion protein of the Ig 1-like domain of L1 can bind to recombinant neurocan. Our results support the notion that L1 provides distinct cell binding sites that may serve in cell-cell or cell-matrix interactions.  (+info)

NrCAM, cerebellar granule cell receptor for the neuronal adhesion molecule F3, displays an actin-dependent mobility in growth cones. (7/324)

The neuronal adhesion glycoprotein F3 is a multifunctional molecule of the immunoglobulin superfamily that displays heterophilic binding activities. In the present study, NrCAM was identified as the functional receptor mediating the inhibitory effect of F3 on axonal elongation from cerebellar granule cells. F3Fc-conjugated microspheres binding to neuronal growth cones resulted from heterophilic interaction with NrCAM but not with L1. Time-lapse video-microscopy indicated that F3Fc beads bind at the leading edge and move retrogradely to reach the base of the growth cone within a lapse of 30-60 seconds. Such velocity (5.7 microm/minute) is consistent with a coupling between F3 receptors and the retrograde flow of actin filaments. When actin filaments were disrupted by cytochalasin B, the F3Fc beads remained immobile at the leading edge. The retrograde mobility appeared to be dependent on NrCAM clustering since it was induced upon binding with cross-linked but not dimeric F3Fc chimera. These data indicate that F3 may control growth cone motility by modulating the linkage of its receptor, NrCAM, to the cytoskeleton. They provide further insights into the mechanisms by which GPI-anchored adhesion molecules may exert an inhibitory effect on axonal elongation.  (+info)

Pathological missense mutations of neural cell adhesion molecule L1 affect homophilic and heterophilic binding activities. (8/324)

Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal development has not been determined. Over one-third of patient mutations are single amino acid changes distributed across 10 extracellular L1 domains. We have studied the effects of 12 missense mutations on binding to L1, axonin-1 and F11 and shown for the first time that whereas many mutations affect all three interactions, others affect homophilic or heterophilic binding alone. Patient pathology is therefore due to different types of L1 malfunction. The nature and functional consequence of mutation is also reflected in the severity of the resultant phenotype with structural mutations likely to affect more than one binding activity and result in early mortality. Moreover, the data indicate that several extracellular domains of L1 are required for homophilic and heterophilic interactions.  (+info)