Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. (1/5124)

Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.  (+info)

Divergent effects of intracerebroventricular and peripheral leptin administration on feeding and hypothalamic neuropeptide Y in lean and obese (fa/fa) Zucker rats. (2/5124)

Leptin inhibits feeding and decreases body weight. It may act partly by inhibiting hypothalamic neurons that express neuropeptide Y, a powerful inducer of feeding and obesity. These neuropeptide Y neurons express the Ob-Rb leptin receptor and are overactive in the fatty (fa/fa) Zucker rat. The fa mutation affects the extracellular domain of the leptin receptor, but its impact on leptin action and neuropeptide Y neuronal activity is not fully known. We compared the effects of three doses of leptin given intracerebroventricularly and three doses of leptin injected intraperitoneally on food intake and hypothalamic neuropeptide Y mRNA, in lean and fatty Zucker rats. In lean rats, 4-h food intake was reduced in a dose-related fashion (P<0.01) by all intracerebroventricular leptin doses and by intraperitoneal doses of 300 and 600 microg/kg. Neuropeptide Y mRNA levels were reduced by 28% and 21% after the highest intracerebroventricular and intraperitoneal doses respectively (P<0. 01 for both). In fatty rats, only the highest intracerebroventricular leptin dose reduced food intake (by 22%; P<0. 01). Neuropeptide Y mRNA levels were 100% higher in fatty rats than in lean animals, and were reduced by 18% (P<0.01) after the highest intracerebroventricular leptin dose. Intraperitoneal injection had no effect on food intake and neuropeptide Y mRNA. The fa/fa Zucker rat is therefore less sensitive to leptin given intracerebroventricularly and particularly intraperitoneally, suggesting that the fa mutation interferes both with leptin's direct effects on neurons and its transport into the central nervous system. Obesity in the fa/fa Zucker rat may be partly due to the inability of leptin to inhibit hypothalamic neuropeptide Y neurons.  (+info)

Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. (3/5124)

The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34(+) cells. Normal promyelocytes (CD34(-)33(+) and CD34(-)13(+)) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v 28.6%; P =.01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P <.001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P <.05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P <.005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P <. 001) and gender (P =.03). Results confirm the reported expression of leptin receptor in normal CD34(+) cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.  (+info)

Changes in body composition and leptin levels during growth hormone (GH) treatment in short children with various GH secretory capacities. (4/5124)

OBJECTIVE: The aim of this study was to follow changes in body composition, estimated by dual-energy X-ray absorptiometry (DXA), in relation to changes in leptin during the first year of GH therapy in order to test the hypothesis that leptin is a metabolic signal involved in the regulation of GH secretion in children. DESIGN AND METHODS: In total, 33 prepubertal children were investigated. Their mean (S.D.) chronological age at the start of GH treatment was 11.5 (1.6) years, and their mean height was -2.33 (0.38) S.D. scores (SDS). GH was administered subcutaneously at a daily dose of 0.1 (n=26) or 0.2 (n=7) IU/kg body weight. Ten children were in the Swedish National Registry for children with GH deficiency, and twenty-three children were involved in trials of GH treatment for idiopathic short stature. Spontaneous 24-h GH secretion was studied in 32 of the children. In the 24-h GH profiles, the maximum level of GH was determined and the secretion rate estimated by deconvolution analysis (GHt). Serum leptin levels were measured at the start of GH treatment and after 10 and 30 days and 3, 6 and 12 months of treatment. Body composition measurements, by DXA, were performed at baseline and 12 months after the onset of GH treatment. RESULTS: After 12 months of GH treatment, mean height increased from -2.33 to -1.73 SDS and total body fat decreased significantly by 3.0 (3.3)%. Serum leptin levels were decreased significantly at all time points studied compared with baseline. There was a significant correlation between the change in total body fat and the change in serum leptin levels during the 12 months of GH treatment, whereas the leptin concentration per unit fat mass did not change. In a multiple stepwise linear regression analysis with 12 month change in leptin levels as the dependent variable, the percentage change in fat over 12 months, the baseline fat mass (%) of body mass and GHt accounted for 24.0%, 11.5% and 12.2% of the variability respectively. CONCLUSIONS: There are significant correlations between changes in leptin and fat and endogenous GH secretion in short children with various GH secretory capacities. Leptin may be the messenger by which the adipose tissue affects hypothalamic regulation of GH secretion.  (+info)

Extremely low values of serum leptin in children with congenital generalized lipoatrophy. (5/5124)

Congenital generalized lipoatrophy (CGL) is a syndrome with multiple clinical manifestations and complete atrophy of adipose tissue. The exact mechanism of this disease remains unknown. One hypothesis presupposes an abnormal development of adipocytes. Leptin, the adipocyte-specific product of the ob gene, acts as a regulatory factor of body weight. In children, as in adults, leptin levels are correlated with body mass index (BMI) and body fat mass. Some authors have demonstrated that adults with congenital or acquired generalized lipoatrophy have decreased leptin concentrations. In order to study serum leptin profile during childhood in this disease, we measured serum leptin concentrations in six children aged 5.5-11 years suffering from CGL, and investigated the relationship between metabolic parameters and the variations in leptin levels. Serum leptin concentrations (1.19+/-0.32 ng/ml (+/- S.D.)) were extremely low compared with those observed in normal children. No significant correlation was found with BMI, which is known to be one of the major determinants of serum leptin. Serum leptin values were significantly correlated with fasting insulin levels (r=0.83, P=0.024). In conclusion, extremely low leptin values measured in children with CGL could be regarded as one among other diagnostic parameters. However, the detectable levels observed in all of these children support the evidence that a small amount of body fat is likely to be present in these patients, despite complete subcutaneous lipoatrophy. Our data suggest that this small amount of adipose tissue could be metabolically active and, at least in part, sensitive to insulin. Further investigations are required to uncover the pathophysiological mechanisms of this syndrome, known to be commonly associated with insulin resistance.  (+info)

The role of the sympathetic nervous system in the regulation of leptin synthesis in C57BL/6 mice. (6/5124)

The objectives of this study were to determine whether leptin synthesis is regulated by the sympathetic nervous system and if so whether beta-adrenergic receptors mediate this effect. We show that sympathetic blockade by reserpine increases leptin mRNA levels in brown but not white adipose tissue, while acute cold-exposure decreases leptin expression 10-fold in brown adipose tissue and 2-fold in white adipose tissue. The cold-induced reduction in leptin mRNA can be prevented by a combination of propranolol and SR 59230A but not by either antagonist alone, indicating that beta3-adrenergic receptors and classical beta1/beta2-adrenergic receptors both mediate responses to sympathetic stimulation. Circulating leptin levels reflect synthesis in white adipose tissue but not in brown adipose tissue.  (+info)

Leptin and reproduction. (7/5124)

In the few years since leptin was identified as a satiety factor in rodents, it has been implicated in the regulation of various physiological processes. Leptin has been shown to promote sexual maturation in rodent species and a role in reproduction has been investigated at various sites within the hypothalamo-pituitary-gonadal axis. This review considers the evidence that leptin (or alteration in amount of body fat) can affect reproduction. There is evidence that leptin plays a permissive role in the onset of puberty, probably through action on the hypothalamus, where leptin receptors are found in cells that express appetite-regulating peptides. There is little evidence that leptin has a positive effect on the pituitary gonadotrophs and the gonads. There is also very little indication that leptin acts in an acute manner to regulate reproduction in the short term. It seems more likely that leptin is a 'barometer' of body condition that sends signals to the brain. Studies in vitro have shown negative effects on ovarian steroid production and there are no reports of effects on testicular function. Leptin concentrations in plasma increase in women during pregnancy, owing to production by the placenta but the functional significance of this is unknown. A number of factors that affect the production and action of leptin have yet to be studied in detail.  (+info)

Regulation of fatty acid homeostasis in cells: novel role of leptin. (8/5124)

It is proposed that an important function of leptin is to confine the storage of triglycerides (TG) to the adipocytes, while limiting TG storage in nonadipocytes, thus protecting them from lipotoxicity. The fact that TG content in nonadipocytes normally remains within a narrow range, while that of adipocytes varies enormously with food intake, is consistent with a system of TG homeostasis in normal nonadipocytes. The facts that when leptin receptors are dysfunctional, TG content in nonadipocytes such as islets can increase 100-fold, and that constitutively expressed ectopic hyperleptinemia depletes TG, suggest that leptin controls the homeostatic system for intracellular TG. The fact that the function and viability of nonadipocytes is compromised when their TG content rises above or falls below the normal range suggests that normal homeostasis of their intracellular TG is critical for optimal function and to prevent lipoapoptosis. Thus far, lipotoxic diabetes of fa/fa Zucker diabetic fatty rats is the only proven lipodegenerative disease, but the possibility of lipotoxic disease of skeletal and/or cardiac muscle may require investigation, as does the possible influence of the intracellular TG content on autoimmune and neoplastic processes.  (+info)