Quantitative histology by multicolor slide-based cytometry. (1/113)

BACKGROUND: In lymphatic organs, the quantitative analysis of the spatial distribution of leukocytes by tissue cytometry would give relevant information about alterations during diseases (leukemia, HIV, AIDS) and their therapeutic regimen, as well as in experimental settings. METHODS: We have developed a semiautomated analysis method for laser scanning cytometry (LSC) termed "multiple thresholding," which is suitable for archived or fresh biopsy material of human lymph nodes and tonsils. Sections are stained with PI for nuclear DNA and up to four antigens using direct or indirect immunofluorescence staining. Measurement is triggered on DNA-fluorescence (argon laser, Ar) or on specific cell labeling. Due to the heterogeneity of cell density, measurements are performed repeatedly at different threshold levels (low threshold: regions of low cellular density, germinal center; high threshold: dense regions, mantle zone). Data are acquired by single- (Ar) or dual-laser excitation (Ar-HeNe) in order to analyze single- (FITC) up to four-color (FITC/PE/PECy5/APC) stained specimen. RESULTS: Percentage and cellular density of cell-subsets is quantified in different microanatomical regions of the specimen. These data were highly correlated with manual scoring of identical specimens (r(2) = 0.96, P < 0.0001). With LSC, semiautomated operator-independent immunophenotyping in tissue sections of lymphatic organs with up to three antibodies simultaneously is possible. CONCLUSIONS: We expect this tissue cytometric approach to yield new insight into processes during diseases and help to quantify the success of therapeutic interventions.  (+info)

Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis. (2/113)

BACKGROUND: Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. METHODS: We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. RESULTS: With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. CONCLUSIONS: SFM is a valuable method for the evaluation of fluorescently labeled cells.  (+info)

Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-inflammatory chalcone derivative in RAW 264.7 cells. (3/113)

The synthetic chalcone 3',4',5',3,4,5-hexamethoxy-chalcone (CH) is an anti-inflammatory compound able to reduce nitric oxide (NO) production by inhibition of inducible NO synthase protein synthesis. In this work, we have studied the mechanisms of action of this compound. CH (10-30 microm) prevents the overproduction of NO in RAW 264.7 macrophages stimulated with lipopolysaccharide (1 microg ml(-1)) due to the inhibition of nuclear factor kappaB (NF-kappaB) activation. We have shown that treatment of cells with CH results in diminished degradation of the NF-kappaB-IkappaB complex leading to inhibition of NF-kappaB translocation into the nucleus, DNA binding and transcriptional activity. We also demonstrate the ability of this compound to activate NfE2-related factor (Nrf2) and induce heme oxygenase-1 (HO-1). Our results indicate that CH determines a rapid but nontoxic increase of intracellular oxidative species, which could be responsible for Nrf2 activation and HO-1 induction by this chalcone derivative. This novel anti-inflammatory agent simultaneously induces a cytoprotective response (HO-1) and downregulates an inflammatory pathway (NF-kappaB) with a mechanism of action different from antioxidant chalcones.  (+info)

Slide-based cytometry and predictive medicine: the 8th Leipziger workshop and the 1st international workshop on slide-based cytometry. (4/113)

Slide-based cytometry (SBC) and related techniques offer unique tools to perform complex diagnostic procedures at very early disease stages. Multicolor or polychromatic analysis of cells by SBC is of special importance, not only as a cytomics technology platform, but for patients with low blood volume such as neonates. The exact knowledge of the location of each cell on the slide allows the specimen to be restained and subsequently reanalyzed. These separate measurements can be fused to one data file (merging), increasing the information obtained per cell. Relocalization and optical evaluation of the cells, a typical feature of SBC, can be of integral importance for cytometric analysis. Predictive medicine is aimed at the detection of changes in the patient's state prior to the manifestation of deterioration or improvement. Such instances are concerned with multiorgan failure in sepsis or noninfectious posttraumatic shock in intensive care patients, or the pretherapeutic identification of high risk patients in cancer cytostatic therapy. Early anti-infectious or anti-shock therapy, as well as curative chemotherapy in combination with stem cell transplantation, may provide better survival chances for the patient as well as concomitant cost containment. Predictive medicine-guided, individualized, early reduction or cessation of therapy may lower or abrogate potential therapeutic side effects (individualized medicine). With the 8th Leipziger Workshop and the 1st International Workshop on Slide-Based Cytometry, cytomics technologies moved to more practical applications in the clinics and the clinical laboratory. This development will be continued in 2004, at the upcoming Leipziger Workshop and the International Workshop on Slide-Based Cytometry.  (+info)

Scanning fluorescent microscopy analysis is applicable for absolute and relative cell frequency determinations. (5/113)

BACKGROUND: Flow cytometry (FCM) and laser scanning cytometry (LSC) are the routine techniques for fluorescent cell analysis. Recently, we developed a scanning fluorescent microscopy (SFM) technique. This study compares SFM to LSC (two slide-based cytometry, SBC, techniques) and FCM, in experimental and clinical settings. METHODS: For the relative cell-frequency determinations, HT29 colorectal cancer cells and Ficoll separated blood mononuclear cells (FSBMCs) were serially diluted (from 1:1 to 1:1,000) and measured by each of the three techniques. For the absolute cell number determinations (only for SBC) FSBMCs were smeared on slides, then HT29 cells were placed on the slide with a micromanipulator (5-50 cells). Tumor cells circulating in the peripheral blood were isolated by magnetic separation from clinical blood samples of colorectal cancer patients. All samples were double-stained by CD45 ECD and CAM5.2 FITC antibodies. For slides, TOTO-3 and Hoechst 33258 DNA dyes were applied as nuclear counter staining. RESULTS: In the relative cell frequency determinations, the correlations between the calculated value and measured values by SFM, LSC, and FCM were r(2) = 0.79, 0.62, and 0.84, respectively (for all P < 0.01). In the absolute cell frequency determinations, SFM and LSC correlated to a high degree (r(2) = 0.97; P < 0.01). CONCLUSIONS: SFM proved to be a reliable alternative method, providing results comparable to LSC and FCM. SBC proved to be more suitable for rare-cell detection than FCM. SFM with digital slides may prove an acceptable adaptation of conventional fluorescent microscopes in order to perform rare-cell detection.  (+info)

Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. (6/113)

Centrosomes are the principal microtubule organising centres in somatic cells. Abnormal centrosome number is common in tumours and occurs after gamma-irradiation and in cells with mutations in DNA repair genes. To investigate how DNA damage causes centrosome amplification, we examined cells that conditionally lack the Rad51 recombinase and thereby incur high levels of spontaneous DNA damage. Rad51-deficient cells arrested in G2 phase and formed supernumerary functional centrosomes, as assessed by light and serial section electron microscopy. This centrosome amplification occurred without an additional DNA replication round and was not the result of cytokinesis failure. G2-to-M checkpoint over-ride by caffeine or wortmannin treatment strongly reduced DNA damage-induced centrosome amplification. Radiation-induced centrosome amplification was potentiated by Rad54 disruption. Gene targeting of ATM reduced, but did not abrogate, centrosome amplification induced by DNA damage in both the Rad51 and Rad54 knockout models, demonstrating ATM-dependent and -independent components of DNA damage-inducible G2-phase centrosome amplification. Our data suggest DNA damage-induced centrosome amplification as a mechanism for ensuring death of cells that evade the DNA damage or spindle assembly checkpoints.  (+info)

High-throughput laser-mediated in situ cell purification with high purity and yield. (7/113)

BACKGROUND: Technologies for purification of living cells have significantly advanced basic and applied research in many settings. Nevertheless, certain challenges remain, including the robust and efficient purification (e.g., high purity, yield, and sterility) of adherent and/or fragile cells and small cell samples, efficient cell cloning, and safe purification of biohazardous cells. In addition, existing purification methods are generally open loop and exhibit an inverse relation between cell purity and yield. METHODS: An automated closed-loop (i.e., employing feedback control) cell purification technology was developed by building upon medical laser applications and laser-based semiconductor manufacturing equipment. Laser-enabled analysis and processing has combined high-throughput in situ cell imaging with laser-mediated cell manipulation via large field-of-view optics and galvanometer steering. Laser parameters were determined for cell purification using three mechanisms (photothermal, photochemical, and photomechanical), followed by demonstration of system performance and utility. RESULTS: Photothermal purification required approximately 10(8) W/cm(2) at 523 nm in the presence of Allura Red, resulting in immediate protein coagulation and cell necrosis. Photochemical purification required approximately 10(9) W/cm(2) at 355 nm, resulting in apoptosis induction over 4 to 24 h. Photomechanical purification required more than 10(10) W/cm(2) independent of wavelength, resulting in immediate cell lysis. Each approach resulted in high efficiency purification (>99%) after a single operation, as demonstrated with eight cell types. An automated closed-loop process to re-image and irradiate remaining targets in situ was implemented, resulting in improved purification (99.5-100%) without decreasing cell yield or affecting sterility in this closed system. Efficient purification was demonstrated with B- and T-cell mixtures over a wide range of contaminating cell percentages (0.1-99%) and cell densities (10(4)-10(6)/cm(2)). Efficient cloning of 293T cells based on fluorescence with green fluorescent protein after plasmid transfection was also demonstrated. CONCLUSIONS: In situ laser-mediated purification was achieved with nonadherent and adherent cells on the automated laser-enabled analysis and processing platform. Closed-loop processing routinely enabled greater than 99.5% purity with a greater than 90% cell yield in sample sizes ranging from 10(1) to 10(8) cells. Throughput ranged from approximately 10(3) to 10(5) total cells/s for contaminating percentages ranging from 99% to 0.1%, respectively.  (+info)

Novel assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis. (8/113)

It was recently reported that acetylcholinesterase (AChE) is expressed in cells undergoing apoptosis and that its presence is essential for assembly of the apoptosome and subsequent caspase-9 activation. To obtain a marker of active AChE that could assay this enzyme in live intact cells and be applicable to fluorescence microscopy and cytometry, the fluorescein-tagged physostigmine (Ph-F), high affinity ligand (inhibitor) reactive with the active center of AChE, was constructed and tested for its ability to in situ label AChE and measure its induction during apoptosis. Ph-F inhibited cholinesterase activity in vitro (IC50 = 10(-6) and 5 x 10(-6) M for equine butyrylcholinesterase and human erythrocyte AChE, respectively) and was a selective marker of cells and structures that were AChE-positive. Thus, exposure of mouse bone marrow cells to Ph-F resulted in the exclusive labeling of megakaryocytes, and of the diaphragm muscle, preferential labeling of the nerve-muscle junctions (end-plates). During apoptosis of carcinoma HeLa cells and leukemic HL-60 or Jurkat cells triggered either by the DNA topoisomerase 1 inhibitor topotecan (TPT) or by oxidative stress (H2O2), the cells become reactive with Ph-F. Their Ph-F derived fluorescence was measured by flow and laser scanning cytometry. The appearance of Ph-F binding sites during apoptosis was preceded by the loss of mitochondrial potential, was concurrent with the presence of activated caspases, and was followed by loss of membrane integrity. At a very early stage of apoptosis, when nucleolar segregation was apparent, the Ph-F binding sites were distinctly localized within the nucleolus and at later stages of apoptosis in the cytoplasm. During apoptosis triggered by TPT, Ph-F binding was preferentially induced in S-phase cells. Our data on megakaryocytes and end-plates indicate that Ph-F reacts with active sites of AChE, and can be used to reveal the presence of this enzyme in live cells and possibly to study its expression in disorders of the neurological cholinergic system. The findings are also compatible with the reports that AChE may be induced during apoptosis. In fact, the simple and rapid Ph-F binding assay may serve as a convenient marker of apoptotic cells. However, the proposed role of active AChE as an essential factor for assembly of the apoptosome and caspase activation is in question because the AChE inhibitors Ph, Ph-F and BW284c51 did not protect the cells from apoptosis induced by TPT or H2O2. Further studies are thus needed to ascertain the induction and role of AChE in apoptosis.  (+info)