Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. (1/156)

PURPOSE: Dogs fed a diet containing 30% galactose experience retinal vascular changes similar to those in human diabetic retinopathy, with selective pericyte loss as an initial lesion. In the present study the relationship among reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductases, polyol formation, and flux through the polyol pathway in cultured dog retinal capillary cells were investigated. METHODS: Pericytes and endothelial cells were cultured from retina of beagle dogs. NADPH-dependent reductases were characterized by chromatofocusing after gel filtration. Sugars in cultured cells were analyzed by gas chromatography, and flux through the polyol pathway was investigated by 19F nuclear magnetic resonance (NMR) with 3-fluoro-3-deoxy-D-glucose (3FG) as a substrate. The presence of aldose reductase and sorbitol dehydrogenase in these cells was examined by northern blot analysis. RESULTS: Two distinct peaks corresponding to aldose reductase and aldehyde reductase, the latter being dominant, were observed in pericytes by chromatofocusing. Culture in medium containing either 10 mM D-galactose or 30 mM D-glucose resulted in the accumulation of sugar alcohol in pericytes that was markedly reduced by aldose reductase inhibitors. 19F NMR spectra obtained from pericytes cultured for 5 days in medium containing 2 mM 3FG displayed the marked accumulation of 3-fluoro-deoxysorbitol but not 3-fluoro-deoxyfructose. No 3FG metabolism was observed in similarly cultured endothelial cells. With northern blot analysis, aldose reductase was detected in pericytes but not in endothelial cells. Sorbitol dehydrogenase was below the detectable limit in pericytes and endothelial cells. CONCLUSIONS: Aldose, aldehyde, and glyceraldehyde reductases are present in dog retinal capillary pericytes, with aldehyde reductase being the major reductase present. Polyol accumulation easily occurs in pericytes but not in endothelial cells.  (+info)

Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. (2/156)

BACKGROUND: Medullary cells of the concentrating kidney are exposed to high extracellular solute concentrations. It is well established that epithelial cells in this kidney region adapt osmotically to hypertonic stress by accumulating organic osmolytes. Little is known, however, of the adaptive mechanisms of a further medullary cell type, the papillary interstitial cell [renal papillary fibroblast (RPF)]. We therefore compared the responses of primary cultures of RPFs and papillary collecting duct (PCD) cells exposed to hypertonic medium. METHODS: In RPFs and PCD cells, organic osmolytes were determined by high-performance liquid chromatography; mRNA expression for organic osmolyte transporters [Na+/Cl(-)-dependent betaine transporter (BGT), Na(+)-dependent myo-inositol transporter (SMIT)], and the sorbitol synthetic and degrading enzymes [aldose reductase (AR) and sorbitol dehydrogenase (SDH), respectively] was determined by Northern blot analysis. RESULTS: Exposure to hypertonic medium (600 mOsm/kg by NaCl addition) caused intracellular contents of glycerophosphorylcholine, betaine, myo-inositol, and sorbitol, but not free amino acids, to increase significantly in both RPFs and PCD cells. The rise in intracellular contents of these organic osmolytes was accompanied by enhanced expression of mRNAs coding for BGT, SMIT, and AR in both RPFs and PCD cells. SDH mRNA abundance, however, was unchanged. Nonradioactive in situ hybridization studies on sections from formalin-fixed and paraffin-embedded, normally concentrating kidneys showed strong expression of BGT, SMIT, and AR mRNAs in interstitial and collecting duct cells of the papilla, whereas expression of SDH mRNA was much weaker in both cell types. CONCLUSIONS: These results suggest that both RPFs and PCD cells use similar strategies to adapt osmotically to the high interstitial NaCl concentrations characteristic for the inner medulla and papilla of the concentrating kidney.  (+info)

Identification of a ubiquitous family of membrane proteins and their expression in mouse brain. (3/156)

A family of genes encoding membrane proteins with a unique structure has been identified in DNA and cDNA clones of various eukaryotes ranging from yeast to human. The nucleotide sequences of three novel cDNAs from Drosophila melanogaster and mouse were determined. The amino acid sequences of the two mouse proteins have human homologs. The gene (TMS1) encoding the yeast member of this family was disrupted, and the resulting mutant showed no significant phenotype under several stress conditions. The expression of the mouse genes TMS-1 and TMS-2 was examined by in situ hybridization of sections from brain, liver, kidney, heart and testis of an adult mouse as well as in a 1-day-old whole mouse. While the expression of TMS-2 was found to be restricted to the central nervous system, TMS-1 was also expressed in kidney and testis. The expression of TMS-1 and TMS-2 in the brain overlapped and was localized to areas associated with glutamatergic excitatory neurons, such as the hippocampus and cerebral cortex. High-magnification analysis indicated that both mRNAs are expressed in neurons. Semiquantitative analysis of mRNA expression was performed in various parts of the brain. The conservation, unique structure and localization in the mammalian brain of this novel protein family suggest an important biological role.  (+info)

Selective disruption of protein aggregation by cyclodextrin dimers. (4/156)

Beta-cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only L-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two beta-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of L-lactate dehydrogenase and citrate synthase at least in part by disruption of protein-protein aggregation.  (+info)

Clofibrate-induced in vitro hepatoprotection against acetaminophen is not due to altered glutathione homeostasis. (5/156)

Prior induction of peroxisome proliferation protects mice against the in vivo hepatotoxicity of acetaminophen and various other bioactivation-dependent toxicants. The mechanisms underlying such chemoresistance are poorly understood, although they have been suggested to involve alterations in glutathione homeostasis. To clarify the role of glutathione in this phenomenon, we isolated hepatocytes from mice in which hepatic peroxisome proliferation had been induced with clofibrate. The cells were incubated with a range of acetaminophen concentrations and the extent of cell killing after up to 8 h was assessed by measuring lactate dehydrogenase leakage from the cells. Hepatocytes from clofibrate-pretreated mice were much less susceptible to acetaminophen than cells from vehicle-treated controls. However, the extent of glutathione depletion during exposure to acetaminophen was similar in both cell types, as were rates of excretion of the product of glutathione-mediated detoxication of acetaminophen's quinoneimine metabolite, 3-glutathionyl-acetaminophen. The glutathione-replenishing ability of clofibrate-pretreated cells after a brief exposure to diethyl maleate also resembled that of control cells. More importantly, prior depletion of glutathione by diethyl maleate did not abolish the resistance of clofibrate-pretreated cells to acetaminophen. Taken together, these findings indicate that although glutathione-dependent pathways may contribute to hepatoprotection during peroxisome proliferation, the resistance phenomenon is not due exclusively to this mechanism.  (+info)

Complete protection by alpha-crystallin of lens sorbitol dehydrogenase undergoing thermal stress. (6/156)

Sorbitol dehydrogenase (l-iditol:NAD(+) 2-oxidoreductase, E.C. 1.1.1. 14) (SDH) was significantly protected from thermally induced inactivation and aggregation by bovine lens alpha-crystallin. An alpha-crystallin/SDH ratio as low as 1:2 in weight was sufficient to preserve the transparency of the enzyme solution kept for at least 2 h at 55 degrees C. Moreover, an alpha-crystallin/SDH ratio of 5:1 (w/w) was sufficient to preserve the enzyme activity fully at 55 degrees C for at least 40 min. The protection by alpha-crystallin of SDH activity was essentially unaffected by high ionic strength (i.e. 0.5 m NaCl). On the other hand, the transparency of the protein solution was lost at a high salt concentration because of the precipitation of the alpha-crystallin/SDH adduct. Magnesium and calcium ions present at millimolar concentrations antagonized the protective action exerted by alpha-crystallin against the thermally induced inactivation and aggregation of SDH. The lack of protection of alpha-crystallin against the inactivation of SDH induced at 55 degrees C by thiol blocking agents or EDTA together with the additive effect of NADH in stabilizing the enzyme in the presence of alpha-crystallin suggest that functional groups involved in catalysis are freely accessible in SDH while interacting with alpha-crystallin. Two different adducts between alpha-crystallin and SDH were isolated by gel filtration chromatography. One adduct was characterized by a high M(r) of approximately 800,000 and carried exclusively inactive SDH. A second adduct, carrying active SDH, had a size consistent with an interaction of the enzyme with monomers or low M(r) aggregates of alpha-crystallin. Even though it had a reduced efficiency with respect to alpha-crystallin, bovine serum albumin was shown to mimic the chaperone-like activity of alpha-crystallin in protecting SDH from thermal denaturation. These findings suggest that the multimeric structural organization of alpha-crystallin may not be a necessary requirement for the stabilization of the enzyme activity.  (+info)

Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. (7/156)

The purpose of this study was to investigate whether activation of the nuclear receptor PPARalpha is needed for protection from acetaminophen (APAP) hepatotoxicity produced by repeated administration of the peroxisome proliferator clofibrate (CFB). Female wild-type and PPARalpha-null mice received corn oil vehicle or 500 mg CFB/kg, ip, daily for 10 days. They were then fasted overnight (18 h) and either killed at 4 or 24 h after challenge with 400 mg APAP/kg. Controls received 50% propylene glycol vehicle only. In this model of CFB hepatoprotection, liver injury was assessed by measuring plasma sorbitol dehydrogenase activity and by histopathology at 24 h after APAP challenge. Significant hepatocellular necrosis was evident in both corn oil-pretreated PPARalpha-null and wild-type mice at 24 h after APAP challenge. In agreement with previous studies, CFB-pretreated wild-type mice showed marked protection against APAP toxicity. In contrast, CFB did not provide protection against APAP hepatotoxicity in the PPARalpha-null mice. Similarly, at 4 h after APAP challenge, hepatic glutathione depletion and selective arylation of cytosolic proteins were reduced significantly in CFB-pretreated wild-type mice, but not in PPARalpha-null mice. The lack of changes in APAP binding and NPSH depletion in CFB-pretreated, PPARalpha-null mice is consistent with the presence of significant liver injury at 24 h in this treatment group. These findings demonstrate that the protection against APAP hepatotoxicity by peroxisome proliferator treatment is mediated by the activation of PPARalpha.  (+info)

Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. (8/156)

Cryptococcus neoformans, the causative agent of cryptococcosis, produces large amounts of mannitol in culture and in infected mammalian hosts. Although there is considerable indirect evidence that mannitol synthesis may be required for wild-type stress tolerance and virulence in C. neoformans, this hypothesis has not been tested directly. It has been proposed that mannitol-1-phosphate dehydrogenase (MPD) is required for fungal mannitol synthesis, but no MPD-deficient fungal mutants or cDNAs or genes encoding fungal MPDs have been described. Therefore, C. neoformans was purified from a 148 kDa homotetramer of 36 kDa subunits that catalysed the reaction mannitol1-phosphate+NAD--><--fructose 6-phosphate+NADH. Partial peptide sequences were used to isolate the corresponding cDNA and gene, and the deduced MPD protein was found to be homologous to the zinc-containing long-chain alcohol/polyol dehydrogenases. Lysates of Saccharomyces cerevisiae transformed with the cDNA of interest (but not vector-transformed controls) contained MPD catalytic activity. Lastly, Northern analyses demonstrated MPD mRNA in glucose- and mannitol-grown C. neoformans cells. Thus, MPD has been purified and characterized from C. neoformans, and the corresponding cDNA and gene (MPD1) cloned and sequenced. Availability of C. neoformans MPD1 should permit direct testing of the hypotheses that (i) MPD is required for mannitol biosynthesis and (ii) the ability to synthesize mannitol is essential for wild-type stress tolerance and virulence.  (+info)