Adhesion of adhesive resin to dental precious metal alloys. Part I. New precious metal alloys with base metals for resin bonding. (1/860)

New dental precious metal alloys for resin bonding without alloy surface modification were developed by adding base metals (In, Zn, or Sn). Before this, binary alloys of Au, Ag, Cu, or Pd containing In, Zn, or Sn were studied for water durability and bonding strength with 4-META resin. The adhesion ability of the binary alloys was improved by adding In equivalent to 15% of Au content, Zn equivalent to 20% of Ag content, and In, Zn, or Sn equivalent to 5% of Cu content. There was no addition effect of the base metals on Pd, however 15% of In addition improved adhesion with Pd-based alloys containing equi-atomic % of Cu and Pd. The alloy surfaces were analyzed by XPS and showed that oxides such as In2O3, ZnO, or SnO play an important role in improving the adhesive ability of the alloys.  (+info)

Adhesion of adhesive resin to dental precious metal alloys. Part II. The relationship between surface structure of Au-In alloys and adhesive ability with 4-META resin. (2/860)

Adhesion of 4-META to Au-In alloy was improved by adding In equivalent to .15% of Au content. On the basis of the results of Au-In alloys analyzed by XPS, the present study investigated the reason why adhesion of the Au-In alloy was improved. The O 1s spectrum could be separated into three oxygen chemical states, In2O3, chemisorbed H2O, and physisorbed H2O. The amount of chemisorbed H2O decreased remarkably with increasing amount of In. It is considered that the poor adhesive ability of the pure gold and alloys containing only small amounts of In was due to the chemisorbed H2O molecules and insufficient indium oxide on the alloy surface. It was established that excellent adhesion requires an oxide with chemical affinity for 4-META to cover at least 50% of the alloy surface.  (+info)

Super pulse CO2 laser for bracket bonding and debonding. (3/860)

A super pulse and a normal pulse CO2 laser were used to carry out enamel etching and bracket debonding in vitro and in vivo. The shear bond strength of the orthodontic brackets attached to laser-etched and conventional chemically-etched extracted premolars was measured. The pulp cavity temperature was also measured using the same laser irradiation conditions as the shear test. Both super pulse and normal pulse CO2 laser etching resulted in a lower shear bond strength (super pulse: 6.9 +/- 3.4 kg, normal pulse: 9.7 +/- 5.2 kg) than that of chemical etching (15.3 +/- 2.8 kg). Furthermore, the super pulse CO2 laser was able to create debonding at 2 watts within a period of less than 4 seconds (2.9 +/- 0.9 seconds). The super pulse, when irradiating the ceramic brackets from above, during debonding showed a 1.4 degrees C temperature increase in the dental pulp at 2 watts and an increase of 2.1 degrees C at 3 watts. While etching, directly irradiating the enamel surface at 3 watts, the dental pulp showed a temperature increase of 3.5 degrees C. These temperature increases were within the physiologically acceptable limits of the pulp. These results indicate that, in orthodontic treatments, super pulse CO2 laser debonding is more useful than laser etching.  (+info)

An ex vivo investigation into the bond strength of orthodontic brackets and adhesive systems. (4/860)

The aim of this study was to compare the shear bond strength of Adhesive Precoated Brackets (APC) with that of two types of uncoated bracket bases, Straight-Wire and Dyna-Lock. Two types of orthodontic adhesives were used, Transbond XT and Right-On. Three different curing times were evaluated with the APC brackets in order to find the best. Adhesive remnants on the enamel surface following debond were evaluated using the Adhesive Remnant Index (Artun and Bergland, 1984). Bond strengths ranged from 11.00 to 22.08 MPa. For both types of brackets Transbond produced a significant increase in bond strength compared to Right-On. The Dyna-Lock/Right-On combination produced the poorest results. APC brackets cured for 40 s had similar bond strengths to uncoated brackets fixed by means of Transbond. Overall, 79 per cent of specimens had less than half the tooth surface covered with adhesive following debond. Significantly more adhesive remained on tooth surfaces following debond of the Straight-Wire/Right-On group than any other bracket/adhesive combination. Bond strengths were higher with light-cured Transbond than with chemically-cured Right-On. When Transbond is used in association with APC brackets a 40-second cure time is recommended.  (+info)

The effects of sandblasting on the bond strength of molar attachments--an in vitro study. (5/860)

This study evaluated the effect of sandblasting foil mesh molar tube bases on the shear bond strength obtained when bonding to first molar teeth. Fifty-two recently extracted first molar teeth were etched with 35 per cent phosphoric acid gel for 30 seconds. Twenty-six sandblasted 'A' Company molar tube attachments and 26 non-sandblasted attachments were then bonded to the teeth using Phase II orthodontic bonding resin. After storage in water for 24 hours at 37 degrees C, the specimens were debonded in a direction parallel to the buccal surface. Survival analysis using the Weibull function revealed that for a 90 per cent probability of survival, the predicted bond strengths for sandblasted and non-sandblasted bases were 1.76 and 1.66 MPa, respectively. For larger shear stresses, the probabilities of bond survival with sandblasted molar tubes were greater than with non-sandblasted molar tubes although the differences were small, which may be explained by the large proportion of bond failures which occurred at the resin to enamel interface in both groups. It was concluded that sandblasting foil mesh bases is likely to provide only a minimal improvement in clinical performance when bonding to molar teeth.  (+info)

A laboratory investigation to compare enamel preparation by sandblasting or acid etching prior to bracket bonding. (6/860)

A laboratory investigation to compare the mean shear debonding force and mode of bond failure of metallic brackets bonded to sandblasted and acid-etched enamel is described. The buccal surfaces of 30 extracted human premolars were sandblasted for 5 seconds with 50 mu alumina and the buccal surfaces of a further 30 human premolars were etched with 37 per cent phosphoric acid for 15 seconds. Following storage for 24 hours at 37 degrees C in distilled water, shear debonding force was measured using an Instron Universal Testing Machine with a cross-head speed of 10 mm/minute. Mean shear debonding force was significantly lower for brackets bonded to sandblasted enamel compared to acid etched enamel (P < 0.001). Weibull analysis showed that at a given stress the probability of failure was significantly greater for brackets bonded to sandblasted enamel. Brackets bonded to etched enamel showed a mixed mode of bond failure whereas following sandblasting, failure was adhesive at the enamel/composite interface (P < 0.01).  (+info)

Factors affecting the shear bond strength of orthodontic brackets to porcelain. (7/860)

The aim of this investigation was to establish a regime for orthodontic bonding to feldspathic porcelain, which ensures adequate bond strength (6-8 MPa) with minimal damage on debond and consisted of an ex vivo investigation measuring the effects of porcelain surface preparation and thermocycling on shear bond strength of orthodontic brackets. One-hundred-and-twenty feldspathic porcelain bonded crown surfaces were divided into 12 equally-sized groups to assess the effects of: (1) glaze removal, (2) application of hydrofluoric acid, phosphoric acid, or omission of acid treatment, and (3) silane priming upon the bond strength of premolar brackets bonded with Right-on (TM) composite resin adhesive. Specimens were subjected to thermocycling and then to shear debonding forces on an Instron machine. Removal of the porcelain glaze, or use of hydrofluoric acid, prior to bonding were found to be unnecessary to secure the target bond strength. Hydrofluoric acid application was associated with increased porcelain surface damage. Thermocycling caused a significant reduction in shear bond strength to porcelain (P < 0*001). The best regime for orthodontic bonding to feldspathic porcelain was to apply phosphoric acid for 60 seconds, and prime with silane prior to bonding. Usually the porcelain surfaces could be repolished. Refereed Paper  (+info)

Evaluation of the amount of residual monomer on UDMA-based resins by FTIR. (8/860)

The purpose of this study was to establish a method using FTIR to evaluate the polymerization characteristics of UDMA-based resins. Three kinds of experimental UDMA-based resins were prepared with various molar fractions. IR spectra of the cured film specimens were measured with FTIR before and after extracting residual monomer from each specimen by MeOH. From the IR spectra, the changes in the number of double bonds were measured, with the NH absorbance peak as an internal standard, and the amounts of residual monomers (RM) were calculated. The MeOH-immersed specimens were analyzed by HPLC. The RM measured by FTIR were compared with those measured by HPLC. The RM measured by HPLC were more than those by FTIR. Since these differences could be due to the difference in the area measured, this FTIR estimation method of residual monomers in cured resins using the NH absorbance peak as an internal standard could be an appropriate method when the resin monomer does not contain aromatic compounds.  (+info)