Report on use of XAD resins in racing chemistry. (1/286)

This report comprises a summary of the work done with XAD resin extraction by racing chemists and reported in the Association of Official Racing Chemists publications. It is apparent that the use of XAD resins is becoming more popular in racing laboratories as a technique for routine screening and also for the extraction of certain conjugated drugs. Most laboratories employ variations on the original Brinkmann Drug-Skreen Technique. Comparisons of the efficiency of extraction of drugs from horse urine by XAD-2 resin and by chloroform column extraction indicate that some drugs can be extracted with equal or greater efficiency by the resin technique.  (+info)

Diffusion of residual monomer in polymer resins. (2/286)

A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics.  (+info)

Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. (3/286)

The 17S U2 small nuclear ribonucleoprotein particle (snRNP) represents the active form of U2 snRNP that binds to the pre-mRNA during spliceosome assembly. This particle forms by sequential interactions of splicing factors SF3b and SF3a with the 12S U2 snRNP. We have purified SF3b and the 15S U2 snRNP, an intermediate in the assembly pathway, from HeLa cell nuclear extracts and show that SF3b consists of four subunits of 49, 130, 145, and 155 kD. Biochemical analysis indicates that both SF3b and the 12S U2 snRNP are required for the incorporation of SF3a into the 17S U2 snRNP. Nuclease protection studies demonstrate interactions of SF3b with the 5' half of U2 small nuclear RNA, whereas SF3a associates with the 3' portion of the U2 snRNP and possibly also interacts with SF3b. Electron microscopy of the 15S U2 snRNP shows that it consists of two domains in which the characteristic features of isolated SF3b and the 12S U2 snRNP are conserved. Comparison to the two-domain structure of the 17S U2 snRNP corroborates the biochemical results in that binding of SF3a contributes to an increase in size of the 12S U2 domain and possibly induces a structural change in the SF3b domain.  (+info)

Weakly bound calcium ions involved in the thermostability of aqualysin I, a heat-stable subtilisin-type protease of Thermus aquaticus YT-1. (4/286)

Aqualysin I is a heat-stable protease; in the presence of 1 mM Ca(2+), the enzyme is stable at 80 degrees C and shows the highest activity at the same temperature. After gel filtration to remove free Ca(2+) from the purified enzyme sample, the enzyme (holo-aqualysin I) still bound Ca(2+) (1 mol/mol of the enzyme), but was no longer stable at 80 degrees C. On treatment of the holo-enzyme with EDTA, bound Ca(2+) decreased to about 0.3 mol/mol of the enzyme. The thermostability of holo-aqualysin I was dependent on the concentration of added Ca(2+), and 1 mM added Ca(2+) stabilized the enzyme completely, suggesting that aqualysin I has at least two Ca(2+) binding sites, i.e. stronger and weaker binding ones. Titration calorimetry showed single binding of Ca(2+) to the holo-enzyme with an association constant of 3.1 x 10(3) M(-1), and DeltaH and TDeltaS were calculated to be 2.3 and 6.9 kcal/mol, respectively, at 13 degrees C. La(3+), Sr(2+), Nd(3+), and Tb(3+) stabilized the holo-enzyme at 80 degrees C, as Ca(2+) did. These results suggest that the weaker binding site exhibits structural flexibility to bind several metal cations different in size and valency, and that the metal binding to the weaker binding site is essential for the thermostability of aqualysin I.  (+info)

Infra-renal angles, entry into inferior vena cava and vertebral levels of renal veins. (5/286)

Current norms for renal vasculature hold true in only half the population. Standard textbooks perpetuate old misconceptions regarding renal venous anatomy. This study is aimed to determine left and right infra-renal angles (L-IRA, R-IRA); entry level of renal veins into the inferior vena cava (IVC), and height of IVC under renal vein influence; and their vertebral level. One hundred morphologically normal en-bloc renal specimens randomly selected from post-mortem examinations were dissected and resin casted. IRA were also measured from venograms of 32 adult and 11 foetal cadavers, as were vertebral entry levels. IRA measurements (degrees) were as follows: left, 55 degrees +/- 16 degrees (20 degrees -102 degrees ); right, 60 degrees +/- 17 degrees (10 degrees -93 degrees ). Left vein entered IVC higher than right 54%, lower 36%, and opposite each other 10%. Vertical distance between lower borders of veins was 1.0 +/- 0.9 cm. Vertical distance of IVC under renal vein influence was 2.3 +/- 1.0 cm. Vertebral level of veins in adults lies between TI2-L2. In foetuses, IRA was as follows: left, 65 degrees +/- 12 degrees (45 degrees -90 degrees ); right, 58 degrees +/- 7 degrees (40 degrees -70 degrees ); vertebral level between T12 and L3. Similar IRA values from literature noted on right, 51 degrees (26 degrees -100 degrees ); differences on left, 77 degrees (43 degrees -94 degrees ), clearly differing from Williams et al. (Gray's Anatomy, 37(th) ed, 1989) statement that renal veins "open into the inferior vena cava almost at right angles." Large variations of IRA are not surprising since kidneys are considered normally "floating viscera," varying position with posture and respiratory movement as well as in live vs. cadaveric subjects. The entry level into the IVC also differs from Williams et al. This study uniquely quantitated actual height difference between lower borders of left and right veins. The data presented appears to be the first documentation of vertebral level of entry of renal veins into IVC in foetuses. These findings are clinically important for the angiographer, catheter design, and planning porto-renal shunt procedures.  (+info)

Asthma in tunnel workers exposed to synthetic resins. (6/286)

OBJECTIVES: The prevalence of asthma among tunnel workers exposed to synthetic resins was studied by determining airway symptoms, methacholine responsiveness, and lung function. METHODS: Nineteen injection workers were compared with a group of 104 other tunnel workers with similar exposure, except for that to synthetic resins. A questionnaire on respiratory symptoms, smoking habits, use of respiratory protection, and work tasks was used. Lung function was studied using a bellows spirometer. Bronchial reactivity was tested with methacholine. Allergy screening with Phadiatop and radioallergosorbent tests for toluene-diisocyanate-HSA, diphenylmethane-4.4-diisocyanate-HSA, and formaldehyde-HSA (HSA = human serum albumin) were carried out. Methylene diphenyl diisocyanate (MDI) and MDI prepolymer exposure was estimated by filter sampling, and the filters were analyzed by high-performance liquid chromatography. The most common work situations were simulated for an estimation of exposure to isocyanates. RESULTS: The injection workers reported more respiratory symptoms than the reference group, and they had higher prevalences of bronchial hyperresponsiveness (37% versus 14%), asthma (26% versus 1%), and airflow limitation (37% versus 4%). Toluene-diisocyanate-HSA-specific immunoglobulin E antibodies were found in 2 of the 19 injection workers, but in none of the other tunnel workers. By simulation at a worksite, the average exposure to polymerized MDI was estimated to be 5.5-300 microg/m3 during injection work and 18-4300 microg/m3 during short-term exposure, the highest exposure occurring when cured polyurethane was ground. CONCLUSIONS: Exposure to partly decomposed MDI in tunnel work enhances the risk for respiratory symptoms, methacholine hyperresponsiveness, asthma, and airflow limitation.  (+info)

The role of interfacial binding in the activation of Streptomyces chromofuscus phospholipase D by phosphatidic acid. (7/286)

The Streptomyces chromofuscus phospholipase D (PLD) cleavage of phosphatidylcholine in bilayers can be enhanced by the addition of the product phosphatidic acid (PA). Other anionic lipids such as phosphatidylinositol, oleic acid, or phosphatidylmethanol do not activate this PLD. This allosteric activation by PA could involve a conformational change in the enzyme that alters PLD binding to phospholipid surfaces. To test this, the binding of intact PLD and proteolytically cleaved isoforms to styrene divinylbenzene beads coated with a phospholipid monolayer and to unilamellar vesicles was examined. The results indicate that intact PLD has a very high affinity for PA bilayers at pH >/= 7 in the presence of EGTA that is weakened as Ca(2+) or Ba(2+) are added to the system. Proteolytically clipped PLD also binds tightly to PA in the absence of metal ions. However, the isolated catalytic fragment has a considerably weaker affinity for PA surfaces. In contrast to PA surfaces, all PLD forms exhibited very low affinity for PC interfaces with an increased binding when Ba(2+) was added. All PLD forms also bound tightly to other anionic phospholipid surfaces (e.g. phosphatidylserine, phosphatidylinositol, and phosphatidylmethanol). However, this binding was not modulated in the same way by divalent cations. Chemical cross-linking studies suggested that a major effect of PLD binding to PA.Ca(2+) surfaces is aggregation of the enzyme. These results indicate that PLD partitioning to phospholipid surfaces and kinetic activation are two separate events and suggest that the Ca(2+) modulation of PA.PLD binding involves protein aggregation that may be the critical interaction for activation.  (+info)

Rapid extraction of clenbuterol from human and calf urine using empore C8 extraction disks. (8/286)

In the present paper, disk extraction was evaluated for the rapid isolation of clenbuterol from human and calf urine, followed by high-performance liquid chromatography analysis with UV detection. A method was developed for the extraction with standard density C8 disks. The disks could be washed with 25% methanol in 0.01M sodium hydroxide without significant losses of clenbuterol. The recovery of denbuterol was about 85%, and the extracts were clean. The detection limit was about 10 ng/mL. The main advantages of these disks were the saving of time and the reduced amounts of organic solvents needed.  (+info)