Sequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation. (33/15802)

The refolding of thermally denatured model collagen-like peptides was studied for a set of 21 guest triplets embedded in a common host framework: acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide. The results show a strong dependence of the folding rate on the identity of the guest Gly-Xaa-Yaa triplet, with the half-times for refolding varying from 6 to 110 min (concentration = 1 mg/ml). All triplets of the form Gly-Xaa-Hyp promoted rapid folding, with the rate only marginally dependent on the residue in the Xaa position. In contrast, triplets of the form Gly-Pro-Yaa and Gly-Xaa-Yaa were slower and showed a wide range of half-times, varying with the identity of the residues in the triplet. At low concentrations, the folding can be described by third-order kinetics, suggesting nucleation is rate-limiting. Data on the relative nucleation ability of different Gly-Xaa-Yaa triplets support the favorable nature of imino acids, the importance of hydroxyproline, the varying effects of the same residue in the Xaa position versus the Yaa position, and the difficulties encountered when leucine or aspartic acid are in the Yaa position. Information on the relative propensities of different tripeptide sequences to promote nucleation of the triple-helix in peptides will aid in identification of nucleation sites in collagen sequences.  (+info)

Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. (34/15802)

BACKGROUND: The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. AIMS: To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). METHODS: Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. RESULTS: Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. CONCLUSIONS: Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.  (+info)

Cell adhesion activity for murine carcinoma cells of a wheat germ 55-kDa protein with binding affinity for animal extracellular matrix proteins. (35/15802)

A wheat germ 55-kDa protein was isolated by affinity chromatography with Matrigel immobilized on agarose, followed by preparative gel electrophoresis. This Matrigel-binding protein designated as WG-55 had an amino-terminal amino acid sequence which is identical to that of a putative mature form of wheat storage protein Gbl 1. WG-55 reacted with concanavalin A, indicating its glycoprotein nature as expected from the amino acid sequence of Gbl 1. As expected, similarly, WG-55 exhibited RGD-dependent cell adhesion activity for murine carcinoma cells. These data suggest that WG-55 or mature Gbl 1 protein may play a role in plant cell adhesion.  (+info)

Connective tissues: matrix composition and its relevance to physical therapy. (36/15802)

In the last 2 decades, the understanding of CT structure and function has increased enormously. It is now clear that the cells of the various CTs synthesize a variety of ECM components that act not only to underpin the specific biomechanical and functional properties of tissues, but also to regulate a variety of cellular functions. Importantly for the physical therapist, and as discussed above, CTs are responsive to changes in the mechanical environment, both naturally occurring and applied. The relative proportions of collagens and PGs largely determine the mechanical properties of CTs. The relationship between the fibril-forming collagens and PG concentration is reciprocal. Connective tissues designed to resist high tensile forces are high in collagen and low in total PG content (mostly dermatan sulphate PGs), whereas CTs subjected to compressive forces have a greater PG content (mostly chondroitin sulphate PGs). Hyaluronan has multiple roles and not only provides tissue hydration and facilitation of gliding and sliding movements but also forms an integral component of large PG aggregates in pressure-resisting tissues. The smaller glycoproteins help to stabilize and link collagens and PGs to the cell surface. The result is a complex interacting network of matrix molecules, which determines both the mechanical properties and the metabolic responses of tissues. Patients with CT problems affecting movement are frequently examined and treated by physical therapists. A knowledge of the CT matrix composition and its relationship to the biomechanical properties of these tissues, particularly the predictable responses to changing mechanical forces, offers an opportunity to provide a rational basis for treatments. The complexity of the interplay among the components, however, requires that further research be undertaken to determine more precisely the effects of treatments on the structure and function of CTs.  (+info)

Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. (37/15802)

Interleukin (IL)-13 is a pleiotropic cytokine produced in large quantities by activated CD4(+) Th2 lymphocytes. To define further its potential in vivo effector functions, the Clara cell 10-kDa protein promoter was used to express IL-13 selectively in the lung, and the phenotype of the resulting transgenic mice was characterized. In contrast to transgene-negative littermates, the lungs of transgene-positive mice contained an inflammatory response around small and large airways and in the surrounding parenchyma. It was mononuclear in nature and contained significant numbers of eosinophils and enlarged and occasionally multinucleated macrophages. Airway epithelial cell hypertrophy, mucus cell metaplasia, the hyperproduction of neutral and acidic mucus, the deposition of Charcot-Leyden-like crystals, and subepithelial airway fibrosis were also prominently noted. Eotaxin protein and mRNA were also present in large quantities in the lungs of the transgene-positive, but not the transgene-negative, mice. IL-4, IL-5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-5 were not similarly detected. Physiological evaluations revealed significant increases in baseline airways resistance and airways hyperresponsiveness (AHR) to methacholine in transgene-positive animals. Thus, the targeted pulmonary expression of IL-13 causes a mononuclear and eosinophilic inflammatory response, mucus cell metaplasia, the deposition of Charcot-Leyden-like crystals, airway fibrosis, eotaxin production, airways obstruction, and nonspecific AHR. IL-13 may play an important role in the pathogenesis of similar responses in asthma or other Th2-polarized tissue responses.  (+info)

The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. (38/15802)

Wound contraction is mediated by myofibroblasts, specialized fibroblasts that appear in large numbers as the wound matures and when resistance to contractile forces increases. We considered that the regulation of myofibroblast differentiation by wound-healing cytokines may be dependent on the resistance of the connective tissue matrix to deformation. We examined transforming growth factor-beta1 (TGF-beta1) induction of the putative fibroblast contractile marker, alpha-smooth muscle actin (alpha-SMA), and the regulation of this process by the compliance of collagen substrates. Cells were cultured in three different types of collagen gels with wide variations of mechanical compliance as assessed by deformation testing. The resistance to collagen gel deformation determined the levels of intracellular tension as shown by staining for actin stress fibers. For cells plated on thin films of collagen-coated plastic (ie, minimal compliance and maximal intracellular tension), TGF-beta1 (10 ng/ml; 6 days) increased alpha-SMA protein content by ninefold as detected by Western blots but did not affect beta-actin content. Western blots of cells in anchored collagen gels (moderate compliance and tension) also showed a TGF-beta1-induced increase of alpha-SMA content, but the effect was greatly reduced compared with collagen-coated plastic (<3-fold increase). In floating collagen gels (high compliance and low tension), there were only minimal differences of alpha-SMA protein. Northern analyses for alpha-SMA and beta-actin indicated that TGF-beta1 selectively increased mRNA for alpha-SMA similar to the reported protein levels. In pulse-chase experiments, [35S]methionine-labeled intracellular alpha-SMA decayed most rapidly in floating gels, less rapidly in anchored gels, and not at all in collagen plates after TGF-beta1 treatment. TGF-beta1 increased alpha2 and beta1 integrin content by 50% in cells on collagen plates, but the increase was less marked on anchored gels and was undetectable in floating gels. When intracellular tension on collagen substrates was reduced by preincubating cells with blocking antibodies to the alpha2 and beta1 integrin subunits, TGF-beta1 failed to increase alpha-SMA protein content in all three types of collagen matrices. These data indicate that TGF-beta1-induced increases of alpha-SMA content are dependent on the resistance of the substrate to deformation and that the generation of intracellular tension is a central determinant of contractile cytoskeletal gene expression.  (+info)

Role of extracellular matrix and Ras in regulation of glomerular epithelial cell proliferation. (39/15802)

Signals from extracellular matrix (ECM) to growth factor receptors regulate glomerular epithelial cell (GEC) proliferation. Epidermal growth factor (EGF), basic fibroblast growth factor, hepatocyte growth factor (HGF), or thrombin stimulated proliferation of GECs when the cells were adherent to collagen matrices, but not plastic substratum. Furthermore, EGF, HGF, or thrombin activated p42 mitogen-activated protein (MAP) kinase in collagen-adherent GECs, whereas activation was weak in GECs on plastic. To further examine the interaction of ECM with the Ras-MAP kinase cascade, GECs were stably transfected with a constitutively active Ras mutant (V12Ras). Low or moderate levels of V12Ras expression did not affect basal MAP kinase activity but, unlike parental GECs, in clones that express V12Ras, EGF was able to induce proliferation and activate MAP kinase when these cells were adherent to plastic. In parental and V12Ras-transfected GECs, MAP kinase activation was inhibited by cytochalasin D. Thus, adhesion of GECs to ECM facilitates proliferation and MAP kinase activation by mitogens acting via tyrosine kinase or non-tyrosine kinase receptors. Activation of pathway(s) downstream of V12Ras supplants signals from ECM that enable proliferation. These signals may involve the actin cytoskeleton.  (+info)

Delayed osteon formation in long-bone diaphysis of an 11-year-old giant cow with dermal dysplasia. (40/15802)

The transverse sections of radius diaphysis in an 11-year-old giant Holstein cow with dermal dysplasia of a collagen disorder-related skin fragility (Cow 1), probably based on increasing turnover of the dermal collagen as reported previously, were morphologically and physico-chemically investigated. Cow 1 had about one and a half times as much as the body weight of normal Holstein cows, aged 5 to 6.5 years with stabilized growth. The bone samples were compared with those of a 12-year-old Holstein cow as controls (Cow 2). It has been reported that the long-bone diaphysis of young calves and some herbivorous dinosaurs are occupied with laminar bone showing a concentric appositional formation, and that such a laminar bone is characteristically seen during the growing period of some farm animals and large dogs that show very rapid growth rates. Cow 1 had a smaller number of osteons than Cow 2 in the outer-half layer of the diaphysis, and showed an intermediate type between Cow 2 and a 1-year-old Holstein ox in the entire layers, although their bone volumes were similar among them. There were no significant differences in Ca and P concentrations and the Vickers microhardness values between the bone matrix of Cow 1 and Cow 2. The bone-collagen fibrils of Cow 1 showed uneven diameters and a disordered arrangement. Thus, there may be some relation in collagen formation between the bone matrix of Cow 1 and the dermis. From the remaining volume of laminar bone, Cow 1, aged 11 years, had probably shown growth until quite recently, so that we consider that Cow 1 became a giant animal, in the same way as some herbivorous dinosaurs.  (+info)