Early response kinase and PI 3-kinase activation in adult cardiomyocytes and their role in hypertrophy. (41/5742)

The present study investigated the role of early response kinase (ERK) and phosphatidylinositol 3 (PI 3)-kinase in ventricular cardiomyocytes from adult rat for the hypertrophic response to alpha-adrenoceptor stimulation. Parameters of the hypertrophic response were stimulation of protein synthesis and induction of creatine kinase BB. The alpha-adrenoceptor agonist phenylephrine (10 micromol/l) activated ERK2 and PI 3-kinase. The protein kinase C inhibitor bisindolylmaleimide (5 micromol/l) and the mitogen-activated protein kinase kinase inhibitor PD-98059 (10 micromol/l) but not the tyrosine kinase inhibitor genistein (100 micromol/l) blocked ERK2 activation. Inhibition of ERK2 activation abolished induction of creatine kinase BB by phenylephrine but not the increase in protein synthesis. The PI 3-kinase inhibitor wortmannin (100 nmol/l) blocked protein synthesis under alpha-adrenoceptor stimulation but did not interfere with ERK2 activation. Inhibition of the ERK2 pathway with PD-98059 did not affect PI 3-kinase activation. We conclude that ERK2- and PI 3-kinase-dependent pathways represent two mutually exclusive ways of signaling that lead to different aspects of the hypertrophic response to alpha-adrenoceptor stimulation.  (+info)

In vivo skin decontamination of methylene bisphenyl isocyanate (MDI): soap and water ineffective compared to polypropylene glycol, polyglycol-based cleanser, and corn oil. (42/5742)

In the home and workplace, decontamination of a chemical from skin is traditionally done with a soap-and-water wash, although some workplaces may have emergency showers. It has been assumed that these procedures are effective, yet workplace illness and even death occur from chemical contamination. Water, or soap and water, may not be the most effective means of skin decontamination, particularly for fat-soluble materials. This study was undertaken to help determine whether there are more effective means of removing methylene bisphenyl isocyanate (MDI), a potent contact sensitizer, from the skin. MDI is an industrial chemical for which skin decontamination, using traditional soap and water and nontraditional polypropylene glycol, a polyglycol-based cleanser (PG-C), and corn oil were all tried in vivo on the rhesus monkey, over 8 h. Water, alone and with soap (5% and 50% soap), were partially effective in the first h after exposure, removing 51-69% of the applied dose. However, decontamination fell to 40-52% at 4 h and 29-46% by 8 h. Thus, the majority of MDI was not removed by the traditional soap-and-water wash; skin tape stripping after washing confirmed that MDI was still on the skin. In contrast, polypropylene glycol, PG-C, and corn oil all removed 68-86% of the MDI in the first h, 74-79% at 4 h, and 72-86% at 8 h. Statistically, polypropylene glycol, PG-C, and corn oil were all better (p < 0.05) than soap and water at 4 and 8 h after dose application. These results indicate that a traditional soap-and-water wash and the emergency water shower are relatively ineffective at removing MDI from the skin. More effective decontamination procedures, as shown here, are available. These procedures are consistent with the partial miscibility of MDI in corn oil and polyglycols.  (+info)

Accuracy of pen injectors versus insulin syringes in children with type 1 diabetes. (43/5742)

OBJECTIVE: To compare the accuracy and precision of insulin syringes and pen devices used by children with type 1 diabetes and their parents. RESEARCH DESIGN AND METHODS: There were 48 subjects (32 patients, a parent of an additional 16 patients) instructed to measure out morning insulin doses three times from vials and/or cartridges containing saline mixed with small amounts of [14C]glucose (solution used as regular insulin) and [3H]glucose (solution used as NPH insulin) and to dispense the contents into a scintillation vial. Statistical analysis was used to determine the accuracy and precision of both methods of insulin delivery. RESULTS: The absolute error in measuring out doses of regular insulin < 5 U was greater with insulin syringes compared with pen injection devices (9.9 +/- 2.4 vs. 4.9 +/- 1.6%, respectively). Both were comparable for regular insulin doses > 5 U (3.2 +/- 0.6 vs. 2.2 +/- 0.4% for syringes and pens, respectively). The accuracy in drawing up NPH doses was similar for low and high insulin doses (mean percent error of 7.5 +/- 1.5 vs. 5.6 +/- 1.1%). CONCLUSIONS: Pen devices are more accurate than insulin syringes in measuring out insulin at low insulin doses. The accuracy of insulin syringes improves when higher doses of regular insulin are measured out and becomes comparable to pen devices.  (+info)

Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. (44/5742)

The kinetics of glucose transport and the transcription of all 20 members of the HXT hexose transporter gene family were studied in relation to the steady state in situ carbon metabolism of Saccharomyces cerevisiae CEN.PK113-7D grown in chemostat cultures. Cells were cultivated at a dilution rate of 0.10 h-1 under various nutrient-limited conditions (anaerobically glucose- or nitrogen-limited or aerobically glucose-, galactose-, fructose-, ethanol-, or nitrogen-limited), or at dilution rates ranging between 0.05 and 0.38 h-1 in aerobic glucose-limited cultures. Transcription of HXT1-HXT7 was correlated with the extracellular glucose concentration in the cultures. Transcription of GAL2, encoding the galactose transporter, was only detected in galactose-limited cultures. SNF3 and RGT2, two members of the HXT family that encode glucose sensors, were transcribed at low levels. HXT8-HXT17 transcripts were detected at very low levels. A consistent relationship was observed between the expression of individual HXT genes and the glucose transport kinetics determined from zero-trans influx of 14C-glucose during 5 s. This relationship was in broad agreement with the transport kinetics of Hxt1-Hxt7 and Gal2 deduced in previous studies on single-HXT strains. At lower dilution rates the glucose transport capacity estimated from zero-trans influx experiments and the residual glucose concentration exceeded the measured in situ glucose consumption rate. At high dilution rates, however, the estimated glucose transport capacity was too low to account for the in situ glucose consumption rate.  (+info)

Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. (45/5742)

The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.  (+info)

The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. (46/5742)

Tacrolimus is a macrolide lactone with potent immunosuppressive properties. It has been shown in clinical studies to prevent allograft rejection. The pharmacokinetics of tacrolimus in healthy subjects and transplant patients has been described in earlier studies using immunoassay methods; however, detailed information on the absorption, distribution, metabolism, and excretion of tacrolimus using a radiolabeled drug is lacking. The objective of the present study was to characterize the disposition of tacrolimus after single i.v. (0.01 mg/kg) and oral (0.05 mg/kg) administration of 14C-labeled drug in six healthy subjects. Tacrolimus was absorbed rapidly after oral dosing with a mean Cmax and Tmax of 42 ng/ml and 1 h, respectively. The oral bioavailability was about 20%. After i.v. and oral dosing, most of the administered dose was recovered in feces, suggesting that bile is the principal route of elimination. Urinary excretion accounted for less than 3% of total administered dose. In systemic circulation, unchanged parent compound accounted for nearly all the radioactivity; however, less than 0.5% of unchanged drug was detectable in feces and urine. The excretion of the metabolites was formation-rate-limited. The mean total body clearance at 37.5 ml/min was equivalent to about 3% of the liver blood flow. Renal clearance was less than 1% of the total body clearance. The mean elimination half-life was 44 h.  (+info)

Synthesis of adenine and guanine nucleotides at the 'inosinic branch point' in lymphocytes of leukemia patients. (47/5742)

The synthesis of purine nucleotides has been studied in human peripheral blood lymphocytes from healthy subjects and patients affected by B-cell chronic lymphocytic leukemia (B-CLL). The rate of the synthesis was measured by following the incorporation of 14C-formate into the nucleotides of lymphocyte suspensions. The whole sequence AMP-->ADP-->ATP was found reduced in B-CLL lymphocytes; in the case of guanylates only the last step of the sequence GMP-->GDP-->GTP was significantly lower in the same cells. From the analysis of these results, combined with previous data, we conclude that purine metabolism undergoes an imbalancement during CLL, which is partially compensated, and point out the importance of studying concomitantly purine metabolism and nucleic acid synthesis in leukemia cells.  (+info)

Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. (48/5742)

We describe a method for assessing tissue-specific plasma free fatty acid (FFA) utilization in vivo using a non-beta-oxidizable FFA analog, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Ideally 3H-R-BrP would be transported in plasma, taken up by tissues and activated by the enzyme acyl-CoA synthetase (ACS) like native FFA, but then 3H-labeled metabolites would be trapped. In vitro we found that 2-bromopalmitate and palmitate compete equivalently for the same ligand binding sites on albumin and intestinal fatty acid binding protein, and activation by ACS was stereoselective for the R-isomer. In vivo, oxidative and non-oxidative FFA metabolism was assessed in anesthetized Wistar rats by infusing, over 4 min, a mixture of 3H-R-BrP and [U-14C] palmitate (14C-palmitate). Indices of total FFA utilization (R*f) and incorporation into storage products (Rfs') were defined, based on tissue concentrations of 3H and 14C, respectively, 16 min after the start of tracer infusion. R*f, but not Rfs', was substantially increased in contracting (sciatic nerve stimulated) hindlimb muscles compared with contralateral non-contracting muscles. The contraction-induced increases in R*f were completely prevented by blockade of beta-oxidation with etomoxir. These results verify that 3H-R-BrP traces local total FFA utilization, including oxidative and non-oxidative metabolism. Separate estimates of the rates of loss of 3H activity indicated effective 3H metabolite retention in most tissues over a 16-min period, but appeared less effective in liver and heart. In conclusion, simultaneous use of 3H-R-BrP and [14C]palmitate tracers provides a new useful tool for in vivo studies of tissue-specific FFA transport, utilization and metabolic fate, especially in skeletal muscle and adipose tissue.  (+info)