Early symbiotic responses induced by Sinorhizobium meliloti iIvC mutants in alfalfa. (1/18)

A mutation in the ilvC gene of Sinorhizobium meliloti 1021 determines a symbiotically defective phenotype. ilvC mutants obtained from different S. meliloti wild-type strains are able to induce root hair deformation on alfalfa roots and show variable activation of the common nodulation genes nodABC. All of these mutants are noninfective. The presence of extra copies of nodD3-syrM in an IlvC- background does not promote nod expression but allows the detection of low levels of Nod factor production. The sulphation of the Nod factor metabolites, however, is not affected. Furthermore, IlvC- strains induce a specific pattern of starch accumulation on alfalfa roots as well as of early nodulin expression. Hence, the pleiotropic action of the ilvC gene in S. meliloti may reveal novel complexities involved in the symbiotic interaction.  (+info)

A new approach to 'megaprimer' polymerase chain reaction mutagenesis without an intermediate gel purification step. (2/18)

BACKGROUND: Site-directed mutagenesis is an efficient method to alter the structure and function of genes. Here we report a rapid and efficient megaprimer-based polymerase chain reaction (PCR) mutagenesis strategy that by-passes any intermediate purification of DNA between two rounds of PCR. RESULTS: The strategy relies on the use of a limiting concentration of one of the flanking primers (reverse or forward) along with the normal concentration of mutagenic primer, plus a prolonged final extension cycle in the first PCR amplification step. This first round of PCR generates a megaprimer that is used subsequently in the second round of PCR, along with the second flanking primer, but without the intermediate purification of the megaprimer. The strategy has been used successfully with four different plasmids to generate various mutants. CONCLUSION: This strategy provides a very rapid, inexpensive and efficient approach to perform site-directed mutagenesis. The strategy provides an alternative to conventional megaprimer based site-directed mutagenesis, which is based on an intermediate gel purification step. The strategy gives a high frequency of mutagenesis.  (+info)

Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site. (3/18)

Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.  (+info)

The crystal structure of a bacterial class II ketol-acid reductoisomerase: domain conservation and evolution. (4/18)

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class I) found in fungi and most bacteria, and a long form (Class II) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class II KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.  (+info)

The product of the Rhizobium meliloti ilvC gene is required for isoleucine and valine synthesis and nodulation of alfalfa. (5/18)

Tn5-induced mutants of Rhizobium meliloti that require the amino acids isoleucine and valine for growth on minimal medium were studied. In one mutant, 1028, the defect is associated with an inability to induce nodules on alfalfa. The Tn5 mutation in 1028 is located in a chromosomal 5.5-kb EcoRI fragment. Complementation analysis with cloned DNA indicated that 2.0 kb of DNA from the 5.5-kb EcoRI fragment restored the wild-type phenotype in the Ilv- Nod- mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to those for Escherichia coli IlvC and Saccharomyces cerevisiae Ilv5. Genes ilvC and ilv5 code for the enzyme acetohydroxy acid isomeroreductase (isomeroreductase), the second enzyme in the parallel pathways for the biosynthesis of isoleucine and valine. Enzymatic assays confirmed that strain 1028 was a mutant defective in isomeroreductase activity. In addition, it was shown that the ilvC genes of Rhizobium meliloti and E. coli are functionally equivalent. We demonstrated that in ilvC mutant 1028 the common nodulation genes nodABC are not activated by the inducer luteolin. E. coli ilvC complemented both defective properties (Ilv- and Nod-) found in mutant 1028. These findings demonstrate that R. meliloti requires an active isomeroreductase enzyme for successful nodulation of alfalfa.  (+info)

Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. (6/18)

We have reported increased glutamate production by a mutant of Corynebacterium glutamicum ATCC14067 (strain F172-8) with reduced H(+)-ATPase activity under biotin-limiting culture conditions (Aoki et al. Biosci. Biotechnol. Biochem., 69, 1466-1472 (2005)). In the present study, we examined valine production by an H(+)-ATPase-defective mutant of C. glutamicum. Using the double-crossover chromosome replacement technique, we constructed a newly defined H(+)-ATPase-defective mutant from ATCC13032. After transforming the new strain (A-1) with a C-terminal truncation of acetohydroxyacid synthase gene (ilvBN), valine production increased from 21.7 mM for the wild-type strain to 46.7 mM for the A-1 in shaking flask cultures with 555 mM glucose. Increased production of the valine intermediate acetoin was also observed in A-1, and was reduced by inserting acetohydroxyacid isomeroreductase gene (ilvC) into the ilvBN plasmid. After transformation with this new construct, valine production increased from 38.3 mM for the wild-type strain to 95.7 mM for A-1 strain. To the best of our knowledge, this is the first report indicating that an H(+)-ATPase-defective mutant of C. glutamicum is capable of valine production. Our combined results with glutamate and valine suggest that the H(+)-ATPase defect is also effective in the fermentative production of other practical compounds.  (+info)

The genetic architecture of branched-chain amino acid accumulation in tomato fruits. (7/18)

 (+info)

General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. (8/18)

 (+info)