Freeze-fracture replication of organized tissue without cryoprotection. (1/2003)

Fresh pieces of rat liver and pancreas were rapidly frozen without prior chemical fixation or cryoprotection, and replicated folloing freeze-fracture. Replicas revealed small peripheral areas free of ice crystals or damage and, within such areas, general ultrastructural morphology was essentially similar to that seen in conventionally processed material. On fracture faces of plasma and nuclear membranes a population of less prominent particles in addition to conventional membrane-associated particles was seen, and smooth areas devoid of particles of any type were seen on some nuclear membranes. These smooth areas did not appear to be similar to smooth areas allegedly arising as artifacts of conventional processing. Tight junctions and gap junctions appeared as they do in cryoprotected specimens. The results provide a base-line for assessing the possible effects of processing steps or agents on the ultrastructure of organized tissues as revealed in freeze-fracture replicas.  (+info)

Molecular mechanisms of thyroid hormone-stimulated steroidogenesis in mouse leydig tumor cells. Involvement of the steroidogenic acute regulatory (StAR) protein. (2/2003)

Using a mouse Leydig tumor cell line, we explored the mechanisms involved in thyroid hormone-induced steroidogenic acute regulatory (StAR) protein gene expression, and steroidogenesis. Triiodothyronine (T3) induced a approximately 3.6-fold increase in the steady-state level of StAR mRNA which paralleled with those of the acute steroid response ( approximately 4.0-fold), as monitored by quantitative reverse transcriptase-polymerase chain reaction assay and progesterone production, respectively. The T3-stimulated progesterone production was effectively inhibited by actinomycin-D or cycloheximide, indicating the requirement of on-going mRNA and protein synthesis. T3 displayed the highest affinity of [125I]iodo-T3 binding and was most potent in stimulating StAR mRNA expression. In accordance, T3 significantly increased testosterone production in primary cultures of adult mouse Leydig cells. The T3 and human chorionic gonadotropin (hCG) effects on StAR expression were similar in magnitude and additive. Cells expressing steroidogenic factor 1 (SF-1) showed marginal elevation of StAR expression, but coordinately increased T3-induced StAR mRNA expression and progesterone levels. In contrast, overexpression of DAX-1 markedly diminished the SF-1 mRNA expression, and concomitantly abolished T3-mediated responses. Noteworthy, T3 augmented the SF-1 mRNA expression while inhibition of the latter by DAX-1 strongly impaired T3 action. Northern hybridization analysis revealed four StAR transcripts which increased 3-6-fold following T3 stimulation. These observations clearly identified a regulatory cascade of thyroid hormone-stimulated StAR expression and steroidogenesis that provides novel insight into the importance of a thyroid-gonadal connection in the hormonal control of Leydig cell steroidogenesis.  (+info)

Lectin receptor sites on rat liver cell nuclear membranes. (3/2003)

The presence and localization of lectin receptor sites on rat liver cell nuclear and other endomembranes was studied by light and electron microscopy using fluorescein and ferritin-coupled lectin conjugates. Isolated nuclei labelled with fluorescein-conjugated Concanavalin A (Con A) or wheat germ agglutinin (WGA) often showed membrane staining, which sometimes was especially bright on small stretches of the nuclear surface. Unlabelled nuclei and nuclei with a complete ring fluorescence were also seen. The nuclear fluorescence corresponded in intensity to that seen on the surface of isolated rat liver cells. Con A-ferritin particles were seldom detected on the cytoplasmic surface of the intact nuclear envelope. However, at places where the 2 leaflets of the envelope were widely separated or where the outer nuclear membrane was partly torn away, heavy labelling was seen on the cisternal surface of both the inner and outer nuclear membranes. Labelling with Con A-ferritin was also found on the cisternal side of rough endoplasmic reticulum present in the specimens. No labelling was seen on the cytoplasmic surface of mitochondrial outer membrane. The results demonstrate the presence of binding sites for Con A and WGA in nuclei and an asymmetric localization of these sites on the cisternal side of ribosome-carrying endomembranes in rat liver cells.  (+info)

Sequential PKC- and Cdc2-mediated phosphorylation events elicit zebrafish nuclear envelope disassembly. (4/2003)

Molecular markers of the zebrafish inner nuclear membrane (NEP55) and nuclear lamina (L68) were identified, partially characterized and used to demonstrate that disassembly of the zebrafish nuclear envelope requires sequential phosphorylation events by first PKC, then Cdc2 kinase. NEP55 and L68 are immunologically and functionally related to human LAP2beta and lamin B, respectively. Exposure of zebrafish nuclei to meiotic cytosol elicits rapid phosphorylation of NEP55 and L68, and disassembly of both proteins. L68 phosphorylation is completely inhibited by simultaneous inhibition of Cdc2 and PKC and only partially blocked by inhibition of either kinase. NEP55 phosphorylation is completely prevented by inhibition or immunodepletion of cytosolic Cdc2. Inhibition of cAMP-dependent kinase, MEK or CaM kinase II does not affect NEP55 or L68 phosphorylation. In vitro, nuclear envelope disassembly requires phosphorylation of NEP55 and L68 by both mammalian PKC and Cdc2. Inhibition of either kinase is sufficient to abolish NE disassembly. Furthermore, novel two-step phosphorylation assays in cytosol and in vitro indicate that PKC-mediated phosphorylation of L68 prior to Cdc2-mediated phosphorylation of L68 and NEP55 is essential to elicit nuclear envelope breakdown. Phosphorylation elicited by Cdc2 prior to PKC prevents nuclear envelope disassembly even though NEP55 is phosphorylated. The results indicate that sequential phosphorylation events elicited by PKC, followed by Cdc2, are required for zebrafish nuclear disassembly. They also argue that phosphorylation of inner nuclear membrane integral proteins is not sufficient to promote nuclear envelope breakdown, and suggest a multiple-level regulation of disassembly of nuclear envelope components during meiosis and at mitosis.  (+info)

Genetic interactions between KAR7/SEC71, KAR8/JEM1, KAR5, and KAR2 during nuclear fusion in Saccharomyces cerevisiae. (5/2003)

During mating of Saccharomyces cerevisiae, two nuclei fuse to produce a single diploid nucleus. Two genes, KAR7 and KAR8, were previously identified by mutations that cause defects in nuclear membrane fusion. KAR7 is allelic to SEC71, a gene involved in protein translocation into the endoplasmic reticulum. Two other translocation mutants, sec63-1 and sec72Delta, also exhibited moderate karyogamy defects. Membranes from kar7/sec71Delta and sec72Delta, but not sec63-1, exhibited reduced membrane fusion in vitro, but only at elevated temperatures. Genetic interactions between kar7 and kar5 mutations were suggestive of protein-protein interactions. Moreover, in sec71 mutants, Kar5p was absent from the SPB and was not detected by Western blot or immunoprecipitation of pulse-labeled protein. KAR8 is allelic to JEMI, encoding an endoplasmic reticulum resident DnaJ protein required for nuclear fusion. Overexpression of KAR8/JEM1 (but not SEC63) strongly suppressed the mating defect of kar2-1, suggesting that Kar2p interacts with Kar8/Jem1p for nuclear fusion. Electron microscopy analysis of kar8 mutant zygotes revealed a nuclear fusion defect different from kar2, kar5, and kar7/sec71 mutants. Analysis of double mutants suggested that Kar5p acts before Kar8/Jem1p. We propose the existence of a nuclear envelope fusion chaperone complex in which Kar2p, Kar5p, and Kar8/Jem1p are key components and Sec71p and Sec72p play auxiliary roles.  (+info)

Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. (6/2003)

In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.  (+info)

Proteins connecting the nuclear pore complex with the nuclear interior. (7/2003)

While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.  (+info)

Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. (8/2003)

Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.  (+info)