Cbfa1 isoforms exert functional differences in osteoblast differentiation. (1/863)

Cbfa1 is an essential transcription factor for osteoblast differentiation and bone formation. We investigated functional differences among three isoforms of Cbfa1: Type I (originally reported as Pebp2alphaA by Ogawa et al. (Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., and Ito, Y. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6859-6863), Type II (originally reported as til-1 by Stewart et al. (Stewart, M., Terry, A., Hu, M., O'Hara, M., Blyth, K., Baxter, E., Cameron, E., Onions, D. E., and Neil, J. C. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8646-8651), and Type III (originally reported as Osf2/Cbfa1 by Ducy et al. (Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G. (1997) Cell 89, 747-754). A reverse transcriptase-polymerase chain reaction analysis demonstrated that these isoforms were expressed in adult mouse bones. The transient transfection of Type I or Type II Cbfa1 in a mouse fibroblastic cell line, C3H10T1/2, induced the expression of alkaline phosphatase (ALP) activity. This induction was synergistically enhanced by the co-introduction of Xenopus BMP-4 cDNA. In contrast, the transient transfection of Type III cDNA induced no ALP activity. In C3H10T1/2 cells stably transfected with each isoform of Cbfa1, the gene expression of ALP was also strongly induced in cells transfected with Type I and Type II Cbfa1 but not in cells with Type III Cbfa1. Osteocalcin, osteopontin,and type I collagen gene expressions were induced or up-regulated in all of the cells stably transfected with each isoform of Cbfa1, and Type II transfected cells exhibited the highest expression level of osteocalcin gene. A luciferase reporter gene assay using a 6XOSE2-SV40 promoter (6 tandem binding elements for Cbfa1 ligated in front of the SV40 promoter sequence), a mouse osteocalcin promoter, and a mouse osteopontin promoter revealed the differences in the transcriptional induction of target genes by each Cbfa1 isoform with or without its beta-subunit. These results suggest that all three of the Cbfa1 isoforms used in the present study are involved in the stimulatory action of osteoblast differentiation, but they exert different functions in the process of osteoblast differentiation.  (+info)

Regulation of chondrocyte differentiation by Cbfa1. (2/863)

Cbfa1, a developmentally expressed transcription factor of the runt family, was recently shown to be essential for osteoblast differentiation. We have investigated the role of Cbfa1 in endochondral bone formation using Cbfa1-deficient mice. Histology and in situ hybridization with probes for indian hedgehog (Ihh), collagen type X and osteopontin performed at E13.5, E14.5 and E17.5 demonstrated a lack of hypertrophic chondrocytes in the anlagen of the humerus and the phalanges and a delayed onset of hypertrophy in radius/ulna in Cbfa1-/- mice. Detailed analysis of Cbfa1 expression using whole mount in situ hybridization and a lacZ reporter gene reveled strong expression not only in osteoblasts but also in pre-hypertrophic and hypertrophic chondrocytes. Our studies identify Cbfa1 as a major positive regulator of chondrocyte differentiation.  (+info)

Maturational disturbance of chondrocytes in Cbfa1-deficient mice. (3/863)

Cbfa1, a transcription factor that belongs to the runt-domain gene family, plays an essential role in osteogenesis. Cbfa1-deficient mice completely lacked both intramembranous and endochondral ossification, owing to the maturational arrest of osteoblasts, indicating that Cbfa1 has a fundamental role in osteoblast differentiation. However, Cbfa1 was also expressed in chondrocytes, and its expression was increased according to the maturation of chondrocytes. Terminal hypertrophic chondrocytes expressed Cbfa1 extensively. The significant expression of Cbfa1 in hypertrophic chondrocytes was first detected at embryonic day 13.5 (E13.5), and its expression in hypertrophic chondrocytes was most prominent at E14.5-16.5. In Cbfa1-deficient mice, whose entire skeleton was composed of cartilage, the chondrocyte differentiation was disturbed. Calcification of cartilage occurred in the restricted parts of skeletons, including tibia, fibula, radius, and ulna. Type X collagen, BMP6, and Indian hedgehog were expressed in their hypertrophic chondrocytes. However, osteopontin, bone sialoprotein, and collagenase 3 were not expressed at all, indicating that they are directly regulated by Cbfa1 in the terminal hypertrophic chondrocytes. Chondrocyte differentiation was severely disturbed in the rest of the skeleton. The expression of PTH/PTHrP receptor, Indian hedgehog, type X collagen, and BMP6 was not detected in humerus and femur, indicating that chondrocyte differentiation was blocked before prehypertrophic chondrocytes. These findings demonstrate that Cbfa1 is an important factor for chondrocyte differentiation.  (+info)

A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. (4/863)

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.  (+info)

Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. (5/863)

Collagenase 3 (MMP-13) is a recently identified member of the matrix metalloproteinase (MMP) gene family that is expressed at high levels in diverse human carcinomas and in articular cartilage from arthritic patients. In addition to its expression in pathological conditions, collagenase 3 has been detected in osteoblasts and hypertrophic chondrocytes during fetal ossification. In this work, we have evaluated the possibility that Cbfa1 (core binding factor 1), a transcription factor playing a major role in the expression of osteoblastic specific genes, is involved in the expression of collagenase 3 during bone formation. We have functionally characterized a Cbfa motif present in the promoter region of collagenase 3 gene and demonstrated, by cotransfection experiments and gel mobility shift assays, that this element is involved in the inducibility of the collagenase 3 promoter by Cbfa1 in osteoblastic and chondrocytic cells. Furthermore, overexpression of Cbfa1 in osteoblastic cells unable to produce collagenase 3 leads to the expression of this gene after stimulation with transforming growth factor beta. Finally, we show that mutant mice deficient in Cbfa1, lacking mature osteoblasts but containing hypertrophic chondrocytes which are also a major source of collagenase 3, do not express this protease during fetal development. These results provide in vivo evidence that collagenase 3 is a target of the transcriptional activator Cbfa1 in these cells. On the basis of these transcriptional regulation studies, together with the potent proteolytic activity of collagenase 3 on diverse collagenous and noncollagenous bone and cartilage components, we proposed that this enzyme may play a key role in the process of bone formation and remodeling.  (+info)

Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. (6/863)

Osteoblasts and odontoblasts, cells that are responsible for the formation of bone and dentin matrices respectively, share several molecular characteristics. Recently, Cbfa1 was shown to be a critical transcriptional regulator of osteoblast differentiation. Mutations in this gene cause cleidocranial dysplasia (CCD), an autosomal dominant disorder in humans and mice characterized by defective bone formation. CCD also results in dental defects that include supernumerary teeth and delayed eruption of permanent dentition. The dental abnormalities in CCD suggest an important role for this molecule in the formation of dentition. Here we describe results of studies aimed at understanding the functions of Cbfa1 in tooth formation. RT-PCR and in situ hybridization analyses show that Cbfa1 has a unique expression pattern in dental mesenchyme from the bud to early bell stages during active epithelial morphogenesis. Unlike that observed in osteoblast differentiation, Cbfa1 is downregulated in fully differentiated odontoblasts and is surprisingly expressed in ectodermally derived ameloblasts during the maturation phase of enamel formation. The role of Cbfa1 in tooth morphogenesis is further illustrated by the misshapen and severely hypoplastic tooth organs in Cbfa1-/- mice. These tooth organs lacked overt odontoblast and ameloblast differentiation and normal dentin and enamel matrices. Epithelial-mesenchymal recombinants demonstrate that dental epithelium regulates mesenchymal Cbfa1 expression during the bud and cap stages and that these effects are mimicked by the FGFs but not by the BMPs as shown by our bead implantation assays. We propose that Cbfa1 regulates the expression of molecules in mesenchyme that act reciprocally on dental epithelium to control its growth and differentiation. Taken together, our data indicate a non-redundant role for Cbfa1 in tooth development that may be distinct from that in bone formation. In odontogenesis, Cbfa1 is not involved in the early signaling networks regulating tooth initiation and early morphogenesis but regulates key epithelial-mesenchymal interactions that control advancing morphogenesis and histodifferentiation of the epithelial enamel organ.  (+info)

Dexamethasone enhances In vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. (7/863)

Vascular calcification is often associated with atherosclerotic lesions. Moreover, the process of atherosclerotic calcification has several features similar to the mineralization of skeletal tissue. Therefore, we hypothesized that vascular smooth muscle cells might acquire osteoblastic characteristics during the development of atherosclerotic lesions. In the present study, we investigated the effect of dexamethasone (Dex), which is well known to be a potent stimulator of osteoblastic differentiation in vitro, on vascular calcification by using an in vitro calcification model. We demonstrated that Dex increased bovine vascular smooth muscle cell (BVSMC) calcification in a dose- and time-dependent manner. Dex also enhanced several phenotypic markers of osteoblasts, such as alkaline phosphatase activity, procollagen type I carboxy-terminal peptide production, and cAMP responses to parathyroid hormone in BVSMCs. We also examined the effects of Dex on human osteoblast-like (Saos-2) cells and compared its effects on BVSMCs and Saos-2 cells. The effects of Dex on alkaline phosphatase activity and the cAMP response to parathyroid hormone in BVSMCs were less prominent than those in Saos-2 cells. Interestingly, we detected that Osf2/Cbfa1, a key transcription factor in osteoblastic differentiation, was expressed in both BVSMCs and Saos-2 cells and that Dex increased the gene expression of both transcription factors. These findings suggest that Dex may enhance osteoblastic differentiation of BVSMCs in vitro.  (+info)

Does adult fracture repair recapitulate embryonic skeletal formation? (8/863)

Bone formation is a continuous process that begins during fetal development and persists throughout life as a remodeling process. In the event of injury, bones heal by generating new bone rather than scar tissue; thus, it can accurately be described as a regenerative process. To elucidate the extent to which fetal skeletal development and skeletal regeneration are similar, we performed a series of detailed expression analyses using a number of genes that regulate key stages of endochondral ossification. They included genes in the indian hedgehog (ihh) and core binding factor 1 (cbfa1) pathways, and genes associated with extracellular matrix remodeling and vascular invasion including vascular endothelial growth factor (VEGF) and matrix metalloproteinase 13 (mmp13). Our analyses suggested that even at the earliest stages of mesenchymal cell condensation, chondrocyte (ihh, cbfa1 and collagen type II-positive) and perichondrial (gli1 and osteocalcin-positive) cell populations were already specified. As chondrocytes matured, they continued to express cbfa1 and ihh whereas cbfa1, osteocalcin and gli1 persisted in presumptive periosteal cells. Later, VEGF and mmp13 transcripts were abundant in chondrocytes as they underwent hypertrophy and terminal differentiation. Based on these expression patterns and available genetic data, we propose a model where Ihh and Cbfa1, together with Gli1 and Osteocalcin participate in establishing reciprocal signal site of injury. The persistence of cbfa1 and ihh, and their targets osteocalcin and gli1, in the callus suggests comparable processes of chondrocyte maturation and specification of a neo-perichondrium occur following injury. VEGF and mmp13 are expressed during the later stages of healing, coincident with the onset of vascularization of the callus and subsequent ossification. Taken together, these data suggest the genetic mechanisms regulating fetal skeletogenesis also regulate adult skeletal regeneration, and point to important regulators of angiogenesis and ossification in bone regeneration.  (+info)