The induction of macrophage spreading: role of coagulation factors and the complement system. (1/176)

Unstimulated mouse peritoneal macrophages, attached to either glass or plastic substrates, responded to factors generated in serum and plasma by spreading and increasing their apparent surface area up to eightfold. Two distinct and dissociable systems were involved. The first appears related to the distinct and dissociable systems were involved. The first appears related to the contact phase of blood coagulation. It is activated by glass and not plastic surfaces, depleted by kaolin adsorption, and inhibited by soybean trypsin inhibitor. In contrast, a separate complement-dependent system can be generated in kaolin-adsorbed plasma. Activation of the complement system can occur either by the alternate or classical pathways and generates a relatively small effector molecule which is dialyzable. These factors presumably influencing the surface membrane and underlying structures may explain the rapid spreading of activated macrophages observed after both infections and chemical peritoneal inflammatory agents.  (+info)

Biological effects of naturally occurring and man-made fibres: in vitro cytotoxicity and mutagenesis in mammalian cells. (2/176)

Cytotoxicity and mutagenicity of tremolite, erionite and the man-made ceramic (RCF-1) fibre were studied using the human-hamster hybrid A(L) cells. Results from these fibres were compared with those of UICC Rhodesian chrysotile fibres. The A(L) cell mutation assay, based on the S1 gene marker located on human chromosome 11, the only human chromosome contained in the hybrid cell, has been shown to be more sensitive than conventional assays in detecting deletion mutations. Tremolite, erionite and RCF-1 fibres were significantly less cytotoxic to A(L) cells than chrysotile. Mutagenesis studies at the HPRT locus revealed no significant mutant yield with any of these fibres. In contrast, both erionite and tremolite induced dose-dependent S1- mutations in fibre-exposed cells, with the former inducing a significantly higher mutant yield than the latter fibre type. On the other hand, RCF-1 fibres were largely non-mutagenic. At equitoxic doses (cell survival at approximately 0.7), erionite was found to be the most potent mutagen among the three fibres tested and at a level comparable to that of chrysotile fibres. These results indicate that RCF-1 fibres are non-genotoxic under the conditions used in the studies and suggest that the high mesothelioma incidence previously observed in hamster may either be a result of selective sensitivity of hamster pleura to fibre-induced chronic irritation or as a result of prolonged fibre treatment. Furthermore, the relatively high mutagenic potential for erionite is consistent with its documented carcinogenicity.  (+info)

Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. (3/176)

Transcutaneous electrical nerve stimulation (TENS) is commonly used for relief of pain. The literature on the clinical application of TENS is extensive. However, surprisingly few reports have addressed the neurophysiological basis for the actions of TENS. The gate control theory of pain is typically used to explain the actions of high-frequency TENS, whereas, low-frequency TENS is typically explained by release of endogenous opioids. The current study investigated the role of mu, delta, and kappa opioid receptors in antihyperalgesia produced by low- and high-frequency TENS by using an animal model of inflammation. Antagonists to mu (naloxone), delta (naltrinodole), or kappa (nor-binaltorphimine) opioid receptors were delivered to the spinal cord by microdialysis. Joint inflammation was induced by injection of kaolin and carrageenan into the knee-joint cavity. Withdrawal latency to heat was assessed before inflammation, during inflammation, after drug (or artificial cerebral spinal fluid as a control) administration, and after drug (or artificial cerebral spinal fluid) administration + TENS. Either high- (100 Hz) or low- frequency (4 Hz) TENS produced approximately 100% inhibition of hyperalgesia. Low doses of naloxone, selective for mu opioid receptors, blocked the antihyperalgesia produced by low-frequency TENS. High doses of naloxone, which also block delta and kappa opioid receptors, prevented the antihyperalgesia produced by high-frequency TENS. Spinal blockade of delta opioid receptors dose-dependently prevented the antihyperalgesia produced by high-frequency TENS. In contrast, blockade of kappa opioid receptors had no effect on the antihyperalgesia produced by either low- or high-frequency TENS. Thus, low-frequency TENS produces antihyperalgesia through mu opioid receptors and high-frequency TENS produces antihyperalgesia through delta opioid receptors in the spinal cord.  (+info)

Effects of omega-agatoxin IVA, a P-type calcium channel antagonist, on the development of spinal neuronal hyperexcitability caused by knee inflammation in rats. (4/176)

Both N- and P-type high-threshold calcium channels are located presynaptically in the CNS and are involved in the release of transmitters. To investigate the importance of P-type calcium channels in the generation of inflammation-evoked hyperexcitability of spinal cord neurons, electrophysiological recordings were made from wide-dynamic-range neurons with input from the knee joint in the anesthetized rat. The responses of each neuron to innocuous and noxious pressure onto the knee and the ankle were continuously assessed before and during the development of an inflammation in the knee joint induced by the injections of K/C into the joint cavity. The specific antagonist at P-type calcium channels omega-agatoxin was administered into a 30-microl trough on the spinal cord surface above the recorded neuron. In most neurons the application of omega-agatoxin before induction of inflammation slightly enhanced the responses to pressure onto the knee and ankle or left them unchanged. Two different protocols were then followed. In the control group (13 rats) only Tyrode was administered to the spinal cord during and after induction of inflammation. In these neurons the responses to mechanical stimuli applied to both the inflamed knee and to the noninflamed ankle showed a significant increase over 4 h. In the experimental group (12 rats) omega-agatoxin was applied during knee injection and in five 15-min periods up to 180 min after kaolin. This prevented the increase of the neuronal responses to innocuous pressure onto the knee and to innocuous and noxious pressure onto the ankle; only the responses to noxious pressure onto the knee were significantly enhanced during development of inflammation. Thus the development of inflammation-evoked hyperexcitability was attenuated by omega-agatoxin, and this suggests that P-type calcium channels in the spinal cord are involved in the generation of inflammation-evoked hyperexcitability of spinal cord neurons. Finally, when omega-agatoxin was administered to the spinal cord 4 h after the kaolin injection, i.e., when inflammation-evoked hyperexcitability was fully established, the responses to innocuous and noxious pressure onto the knee were reduced by 20-30% on average. The shift in the effect of omega-agatoxin, from slight facilitation or no change of the responses before inflammation to inhibition in the state of hyperexcitability, indicates that P-type calcium channels are important for excitatory synaptic transmission involved in the maintenance of inflammation-evoked hyperexcitability.  (+info)

Gabapentin attenuates nociceptive behaviors in an acute arthritis model in rats. (5/176)

In this study, we investigated the effectiveness of gabapentin (Neurontin), administered spinally with a microdialysis fiber, in reducing nociceptive behavioral responses induced by a knee joint inflammation model. This model is produced by injection of the knee joint with kaolin and carrageenan in rats. The resultant knee joint inflammation produces a secondary hyperalgesia to radiant heat applied to the hindpaw. Both pretreatment and post-treatment protocols were examined. Spinal administration of gabapentin (10 mg/ml) infused 1.5 h before induction of knee joint inflammation, although having no effect on the baseline, prevented the development of heat hyperalgesia. Gabapentin also prevented the development of other pain-related behaviors scored subjectively. Gabapentin had no effect, however, on the joint circumference increase typical in this model. In animals with fully developed knee joint inflammation, gabapentin produced a reversal of heat hyperalgesia. The paw withdrawal latency responses and subjective pain scores were no longer significantly different from baseline, but joint circumference increases remained. These data suggest that gabapentin is an effective antinociceptive agent when administered either before or after induction of knee joint inflammation acting through a central neurogenic mechanism.  (+info)

Effect of cerebrospinal fluid shunting on experimental syringomyelia: magnetic resonance imaging and histological findings. (6/176)

The histological changes associated with syringomyelia after reduction of the syrinx size were investigated after cerebrospinal fluid shunting in experimental syringomyelia in the rabbit. Five weeks after syringomyelia was induced by the injection of kaolin into the cisterna magna in Japanese white rabbits, ventriculosubgaleal shunting or syringoepidural shunting were performed. After 1 week magnetic resonance (MR) imaging and histological examination were then carried out. Five of 11 shunted animals showed postoperative reduction of syrinx size on MR imaging. Grossly, some specimens showed cavity collapse and parenchymal healing, and others showed a small residual syrinx in the dorsal horn. The most dramatic histological changes occurred in the gray matter. Specimens with syrinx collapse showed rarefaction and tearing of the gray matter, with mild glial reaction. The edematous gray matter showed both degeneration and regeneration, with neuronal processes surrounded by edema fluid. Reactive astrocytes were observed mainly at the margin of the residual syrinx. Some astrocytic processes invested the extraaxonal space and gray matter lacked supportive tissue. Greater reduction of the syrinx after shunting operation was correlated with more regeneration and less degeneration, and the white matter was edematous and histological changes were milder. Syrinx shrinkage occurred after shunting in this experimental model of syringomyelia. The selective vulnerability of gray matter even after shunting may explain discrepancies between imaging findings and clinical features in this disease. The study supports the potential benefit from early treatment, considering the associated morphological findings of regeneration.  (+info)

The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. (7/176)

Peripheral administration of large doses of lithium chloride (LiCl) to rats causes a spectrum of effects that are consistent with visceral illness. LiCl reduces food intake, decreases salt ingestion after sodium depletion, induces pica, and produces robust conditioned taste aversions. Because some of the effects of peripheral LiCl are mimicked by centrally administered glucagon-like peptide-1 (7-36) amide (GLP-1), we hypothesized that this peptide is involved in the neural pathways by which LiCl causes visceral illness. To test this hypothesis, we pretreated rats with a selective and potent GLP-1 receptor antagonist given directly into the third ventricle via an indwelling cannula before administration of peripheral LiCl. The GLP-1 receptor antagonist completely blocked the effect of LiCl to reduce food intake, induce pica, and produce a conditioned taste aversion. The same dose of GLP-1 receptor antagonist did not reverse the LiCl-induced reduction in NaCl intake. The data indicate a role for GLP-1 receptors in the CNS pathway that mediates some of the effects of visceral illness.  (+info)

Mechanisms for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor. (8/176)

The mechanisms by which human high molecular weight kininogen (HMKrK) contributes to the surface-dependent activation of the Hageman factor systems have been studied. The ability of various mixtures of purified human Hageman factor (coagulation factor XII), HMrK, prekallikrein, and kaolin to activate coagulation factor XI was determined with factor XIa (activated factor XI) clotting assays. Hageman factor, HMrK and prekallikrein were required for maximal rates of activation of factor XI. A certain optimal mixture of purified Hageman factor, HMrK, prekallikrein, and kaolin gave the same rapid initial rate of activation of purified factor XI as an equivalent aliquot of factor XI-deficient plasma. This suggests that potent, surface-mediated activation of factor XI in plasma is explicable in terms of Hageman factor, HMrK, and prekallikrein. By studying separately some of the surface-dependent reactions involving Hageman factor, it was found that HMrK accelerated by at least an order of magnitude the following reactions: (i) the activation of factor XI by activated Hageman factor; (ii) the activation of prekallikrein by activated Hageman factor; and (iii) the activation of Hageman factor by kallikrein. Stoichiometric rather than catalytic amounts of HMrK gave optimal activation of factor XI. These results are consistent with the hypothesis that HMrK and Hageman factor form a complex on kaolin which renders Hageman factor more susceptible to proteolytic activation by kallikrein and which facilitates the action of activated Hageman factor on its substrate proteins, factor XI and prekallikrein.  (+info)