A role for N-arachidonylethanolamine (anandamide) as the mediator of sensory nerve-dependent Ca2+-induced relaxation. (25/3001)

We tested the hypothesis that an endogenous cannabinoid (CB) receptor agonist, such as N-arachidonylethanolamine (anandamide), is the transmitter that mediates perivascular sensory nerve-dependent Ca2+-induced relaxation. Rat mesenteric branch arteries were studied using wire myography; relaxation was determined after inducing contraction with norepinephrine. Cumulative addition of Ca2+ caused dose-dependent relaxation (ED50 = 2.2 +/- 0.09 mM). The relaxation was inhibited by 10 mM TEA and 100 nM iberiotoxin, a blocker of large conductance Ca2+-activated K+ channels, but not by 5 microM glibenclamide, 1 mM 4-aminopyridine, or 30 nM apamin. Ca2+-induced relaxation was also blocked by the selective CB receptor antagonist SR141716A and was enhanced by pretreatment with 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (pefabloc; 30 microM), an inhibitor of anandamide metabolism. Anandamide also caused dose-dependent relaxation (ED50 =.72 +/- 0.3 microM). The relaxation was not inhibited by endothelial denudation, 10 microM indomethacin, or 1 microM miconazole, but was blocked by 3 microM SR141716A, 10 mM TEA, precontraction with 100 mM K+, and 100 nM iberiotoxin, and was enhanced by treatment with 30 microM pefabloc. Mesenteric branch arteries were 200-fold more sensitive to the relaxing action of anandamide than arachidonic acid (ED50 = 160 +/- 7 microM). These data show that: 1) Ca2+ and anandamide cause hyperpolarization-mediated relaxation of mesenteric branch arteries, which is dependent on an iberiotoxin-sensitive Ca2+-activated K+ channel, 2) relaxation induced by both Ca2+ and anandamide is inhibited by CB receptor blockade, and 3) relaxation induced by anandamide is not dependent on its breakdown to arachidonic acid and subsequent metabolism. These findings support the hypothesis that anandamide, or a similar cannabinoid receptor agonist, mediates nerve-dependent Ca2+-induced relaxation in the rat.  (+info)

Fatty acid block of the transient outward current in adult human atrium. (26/3001)

Fatty acids represent an essential source of fuel for the heart and play an important role in the mechanical, electrical, and synthetic activities of cardiac cells. Under pathological conditions, such as ischemia followed by reperfusion, the myocardium is exposed to very high levels of fatty acids, in particular the monounsaturated fatty acid, oleic acid. Elevated plasma fatty acids have been linked to an increased risk for cardiac arrhythmias. In other species, fatty acids have been shown to modulate several cardiac ion channels, most notably potassium channels. Virtually nothing is known about the actions of oleic acid on potassium channels in human heart. We therefore characterized the effects of oleic acid on the transient outward current, sustained current, and inwardly rectifying current, some of the major potassium channels present in human atrium, using the whole-cell patch clamp method. Exposure of cells to oleic acid (5 microM) reduced the transient outward potassium current to 3.7 +/- 0.8 pA/pF (n = 4) compared with 7.0 +/- 0.7 pA/pF (n = 4) (P <. 05) for cells not exposed. In contrast, oleic acid had little effect on either the sustained current (4.3 +/- 0.3 pA/pF, n = 4 for oleic acid versus 4.8 +/- 0.5, n = 5 for control) present after the decay of the transient outward current or on the amplitude of IK1 measured at -100 mV (1.4 +/- 0.4 pA/pF, n = 4 for oleic acid versus 1.3 +/- 0. 4 pA/pF, n = 6 for control). In addition, oleic acid significantly slowed the rate of recovery of the transient outward current, which is predicted to result in a use-dependent reduction in current amplitude in the beating heart. These results suggest a possible contributing role for oleic acid block of the transient outward current in the pathological consequences of myocardial ischemia.  (+info)

Blockade of HERG channels expressed in Xenopus laevis oocytes by external divalent cations. (27/3001)

We have investigated actions of various divalent cations (Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Zn2+) on human ether-a-go-go related gene (HERG) channels expressed in Xenopus laevis oocytes using the voltage clamp technique. All divalent cations inhibited HERG current dose-dependently in a voltage-dependent manner. The concentration for half-maximum inhibition (Ki) decreased at more negative potentials, indicating block is facilitated by hyperpolarization. Ki at 0 mV for Zn2+, Ni2+, Co2+, Ba2+, Mn2+, and Sr2+ was 0.19, 0.36, 0. 50, 0.58, 2.36, and 6.47 mM, respectively. The effects were manifested in four ways: 1) right shift of voltage dependence of activation, 2) decrease of maximum conductance, 3) acceleration of current decay, and 4) slowing of activation. However, each parameter was not affected by each cation to the same extent. The potency for the shift of voltage dependence of activation was in the order Zn2+ > Ni2+ >/= Co2+ > Ba2+ > Mn2+ > Sr2+, whereas the potency for the decrease of maximum conductance was Zn2+ > Ba2+ > Sr2+ > Co2+ > Mn2+. The kinetics of activation and deactivation were also affected, but the two parameters are not affected to the same extent. Slowing of activation by Ba2+ was most distinct, causing a marked initial delay of current onset. From these results we concluded that HERG channels are nonselectively blocked by most divalent cations from the external side, and several different mechanism are involved in their actions. There exist at least two distinct binding sites for their action: one for the voltage-dependent effect and the other for reducing maximum conductance.  (+info)

Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. (28/3001)

Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure.  (+info)

Blockade of ATP-sensitive potassium channels in cerebral arterioles inhibits vasoconstriction from hypocapnic alkalosis in cats. (29/3001)

BACKGROUND AND PURPOSE: Recent studies have shown that the cerebral arteriolar dilation from hypercapnic acidosis is blocked by agents which inhibit KATP channels. These findings suggested that this response is due to opening of KATP channels. Because the repose to CO2 is a continuum, with hypercapnic acidosis causing vasodilation and hypocapnic alkalosis causing vasoconstriction, it would be expected that the response to hypocapnic alkalosis would be due to closing of KATP channels. There are no studies of the effect of inhibition of KATP channels on the response to hypocapnic alkalosis. METHODS: We investigated the effect of 3 agents that in earlier studies were found to inhibit KATP channels--NG-nitro-L-arginine, hydroxylysine, and glyburide--on the cerebral arteriolar constriction caused by graded hypocapnia induced by hyperventilation in anesthetized cats equipped with cranial windows. RESULTS: Hypocapnic alkalosis caused dose-dependent vasoconstriction that was inhibited completely by each of the 3 inhibitors of KATP channels. The blockade induced by these agents was eliminated in the presence of topical L-lysine (5 micromol/L). CONCLUSIONS: The findings show that agents which inhibit ATP-sensitive potassium channels in cerebral arterioles inhibit the vasoconstriction from hypocapnic alkalosis. These and earlier results showing that inhibition of KATP channels inhibited dilation from hypercapnic acidosis demonstrate that the response to CO2 in cerebral arterioles is mediated by the opening and closing of KATP channels.  (+info)

Rate-dependent blockade of a potassium current in human atrium by the antihistamine loratadine. (30/3001)

The antihistamine loratadine is widely prescribed for the treatment of symptoms associated with allergies. Although generally believed to be free of adverse cardiac effects, there are a number of recent reports suggesting that loratadine use may be associated with arrhythmias, in particular atrial arrhythmias. Nothing is known regarding the potassium channel blocking properties of loratadine in human cardiac cells. Using the whole-cell patch clamp technique, the effects of loratadine on the transient outward K current (Ito), sustained current (Isus), and current measured at -100 mV (IK1 and Ins), the major inward and outward potassium currents present in human atrial myocytes, were examined in order to provide a possible molecular mechanism for the observed atrial arrhythmias reported with loratadine use. Loratadine rate-dependently inhibited Ito at therapeutic concentrations with 10 nM loratadine reducing Ito amplitude at a pacing rate of 2 Hz by 34.9+/-6.0%. In contrast, loratadine had no effect on either Isus or current measured at -100 mV. These results may provide a possible mechanism for the incidences of supraventricular arrhythmias reported with the use of loratadine.  (+info)

Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. (31/3001)

BACKGROUND: Hydrogen peroxide (H2O2) and reactive oxygen species are implicated in inflammation, ischemia-reperfusion injury, and atherosclerosis. The role of ion channels has not been previously explored. METHODS AND RESULTS: K+ currents and membrane potential were recorded in endothelial cells by voltage- and current-clamp techniques. H2O2 elicited both hyperpolarization and depolarization of the membrane potential in a concentration-dependent manner. Low H2O2 concentrations (0.01 to 0.25 micromol/L) inhibited the inward-rectifying K+ current (KIR). Whole-cell K+ current analysis revealed that H2O2 (1 mmol/L) applied to the bath solution increased the Ca2+-dependent K+ current (KCa) amplitude. H2O2 increased KCa current in outside-out patches in a Ca2+-free solution. When catalase (5000 micro/mL) was added to the bath solution, the outward-rectifying K+ current amplitude was restored. In contrast, superoxide dismutase (1000 u/mL) had only a small effect on the H2O2-induced K+ current changes. Next, we measured whole-cell K+ currents and redox potentials simultaneously with a novel redox potential-sensitive electrode. The H2O2-mediated KCa current increase was accompanied by a whole-cell redox potential decrease. CONCLUSIONS: H2O2 elicited both hyperpolarization and depolarization of the membrane potential through 2 different mechanisms. Low H2O2 concentrations inhibited inward-rectifying K+ currents, whereas higher H2O2 concentrations increased the amplitude of the outward K+ current. We suggest that reactive oxygen species generated locally increases the KCa current amplitude, whereas low H2O2 concentrations inhibit KIR via intracellular messengers.  (+info)

Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. (32/3001)

Both mitochondrial ATP-sensitive K+ (KATP) channels and the actin cytoskeleton have been proposed to be end-effectors in ischemic preconditioning (PC). For evaluation of the participation of these proposed end effectors, rabbits underwent 30 min of regional ischemia and 3 h of reperfusion. PC by 5-min ischemia + 10-min reperfusion reduced infarct size by 60%. Diazoxide, a mitochondrial KATP-channel opener, administered before ischemia was protective. Protection was lost when diazoxide was given after onset of ischemia. Anisomycin, a p38/JNK activator, reduced infarct size, but protection from both diazoxide and anisomycin was abolished by 5-hydroxydecanoate (5-HD), an inhibitor of mitochondrial KATP channels. Isolated adult rabbit cardiomyocytes were subjected to simulated ischemia by centrifuging the cells into an oxygen-free pellet for 3 h. PC was induced by prior pelleting for 10 min followed by resuspension for 15 min. Osmotic fragility was assessed by adding cells to hypotonic (85 mosmol) Trypan blue. PC delayed the progressive increase in fragility seen in non-PC cells. Incubation with diazoxide or pinacidil was as protective as PC. Anisomycin reduced osmotic fragility, and this was reversed by 5-HD. Interestingly, protection by PC, diazoxide, and pinacidil could be abolished by disruption of the cytoskeleton by cytochalasin D. These data support a role for both mitochondrial KATP channels and cytoskeletal actin in protection by PC.  (+info)