Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. (1/61)

Escape swimming in the notaspid opisthobranch Pleurobranchaea is an episode of alternating dorsal and ventral body flexions that overrides all other behaviors. We have explored the structure of the central pattern generator (CPG) in the cerebropleural ganglion as part of a study of neural network interactions underlying decision making in normal behavior. The CPG comprises at least eight bilaterally paired interneurons, each of which contributes and is phase-locked to the swim rhythm. Dorsal flexion is mediated by hemiganglion ensembles of four serotonin-immunoreactive neurons, the As1, As2, As3, and As4, and an electrically coupled pair, the A1 and A10 cells. When stimulated, A10 commands fictive swimming in the isolated CNS and actual swimming behavior in whole animals. As1-4 provide prolonged, neuromodulatory excitation enhancing dorsal flexion bursts and swim cycle number. Ventral flexion is mediated by the A3 cell and a ventral swim interneuron, IVS, the soma of which is yet unlocated. Initiation of a swim episode begins with persistent firing in A10, followed by recruitment of As1-4 and A1 into dorsal flexion. Recurrent excitation within the As1-4 ensemble and with A1/A10 may reinforce coactivity. Synchrony among swim interneuron partners and bilateral coordination is promoted by electrical coupling among the A1/A10 and As4 pairs, and among unilateral As2-4, and reciprocal chemical excitation between contralateral As1-4 groups. The switch from dorsal to ventral flexion coincides with delayed recruitment of A3, which is coupled electrically to A1, and with recurrent inhibition from A3/IVS to A1/A10. The alternating phase relation may be reinforced by reciprocal inhibition between As1-4 and IVS. Pleurobranchaea's swim resembles that of the nudibranch Tritonia; we find that the CPGs are similar in many details, suggesting that the behavior and network are primitive characters derived from a common pleurobranchid ancestor.  (+info)

Gating of afferent input by a central pattern generator. (2/61)

Intracellular recordings from the sole proprioceptor (the oval organ) in the crab ventilatory system show that the nonspiking afferent fibers from this organ receive a cyclic hyperpolarizing inhibition in phase with the ventilatory motor pattern. Although depolarizing and hyperpolarizing current pulses injected into a single afferent will reset the ventilatory motor pattern, the inhibitory input is of sufficient magnitude to block afferent input to the ventilatory central pattern generator (CPG) for approximately 50% of the cycle period. It is proposed that this inhibitory input serves to gate sensory input to the ventilatory CPG to provide an unambiguous input to the ventilatory CPG.  (+info)

Innate and learned components of human visual preference. (3/61)

BACKGROUND: Recent claims in neuroscience and evolutionary biology suggest that the aesthetic sense reflects preferences for image signals whose characteristics best fit innate brain mechanisms of visual recognition. RESULTS: This hypothesis was tested by behaviourally measuring, for a set of initially unfamiliar images, the effects of category learning on preference judgements by humans, and by relating the observed data to computationally reconstructed internal representations of categorical concepts. Category learning induced complex shifts in preference behaviour. Two distinct factors - complexity and bilateral symmetry - could be identified from the data as determinants of preference judgements. The effect of the complexity factor varied with object knowledge acquired through category learning. In contrast, the impact of the symmetry factor proved to be unaffected by learning experience. Computer simulations suggested that the preference for pattern complexity relies on active (top-down) mechanisms of visual recognition, whereas the preference for pattern symmetry depends on automatic (bottom-up) mechanisms. CONCLUSIONS: Human visual preferences are not fully determined by (objective) structural regularities of image stimuli but also depend on their learned (subjective) interpretation. These two aspects are reflected in distinct complementary factors underlying preference judgements, and may be related to complementary modes of visual processing in the brain.  (+info)

Pattern generation in the buccal system of freely behaving Lymnaea stagnalis. (4/61)

Central pattern generators (CPGs) are neuronal circuits that drive active repeated movements such as walking or swimming. Although CPGs are, by definition, active in isolated central nervous systems, sensory input is thought play an important role in adjusting the output of the CPGs to meet specific behavioral requirements of intact animals. We investigated, in freely behaving snails (Lymnaea stagnalis), how the buccal CPG is used during two different behaviors, feeding and egg laying. Analysis of the relationship between unit activity recorded from buccal nerves and the movements of the buccal mass showed that electrical activity in laterobuccal/ventrobuccal (LB/VB) nerves was as predicted from in vitro data, but electrical activity in the posterior jugalis nerve was not. Autodensity and interval histograms showed that during feeding the CPG produces a much stronger rhythm than during egg laying. The phase relationship between electrical activity and buccal movement changed little between the two behaviors. Fitting the spike trains recorded during the two behaviors with a simple model revealed differences in the patterns of electrical activity produced by the buccal system during the two behaviors investigated. During egg laying the bursts contained less spikes, and the number of spikes per burst was significantly more variable than during feeding. The time between two bursts of in a spike train was longer during egg laying than during feeding. The data show what the qualitative and quantitative differences are between two motor patterns produced by the buccal system of freely behaving Lymnaea stagnalis.  (+info)

Could different directions of infant stepping be controlled by the same locomotor central pattern generator? (5/61)

This study examined the idea of whether the same central pattern generator (CPG) for locomotion can control different directions of walking in humans. Fifty-two infants, aged 2-11 mo, were tested. Infants were supported to walk on a treadmill at a variety of speeds. If forward stepping was elicited, stepping in the other directions (primarily sideways and backward) was attempted. The orientation of the infant on the treadmill belt determined the direction of stepping. In some infants, we also attempted to obtain a smooth transition from one direction to another by gradually changing the orientation of the infant during a stepping sequence. Limb segment motion and surface electromyography from the muscles of the lower limb were recorded. Most infants who showed sustained forward walking also could walk in all other directions. Thirty-three of 34 infants tested could step sideways. The success of eliciting backward stepping was 69%. Most of the infants who did not meet our backward stepping criteria did, however, make stepping movements. The different directions of stepping had similar responses to changes in treadmill speed. The relationship between stance and swing phase durations and cycle duration were the same regardless of the direction of stepping across a range of speeds. Some differences were noted in the muscle activation patterns during different directions of walking. For example, the hamstrings were much more active during the swing phase of backward walking compared with forward walking. The quadriceps was more active in the trailing leg during sideways walking. In some infants, we were able to elicit stepping along a continuum of directions. We found no discrete differences in either the electromyographic patterns or the temporal parameters of stepping as the direction of stepping was gradually changed. The results support the idea that the same locomotor CPG controls different directions of stepping in human infants. The fact that most infants were able to step in all directions, the similarity in the response to speed changes, and the absence of any discrete changes as the direction of stepping was changed gradually are all consistent with this hypothesis.  (+info)

Intrinsic and extrinsic modulation of a single central pattern generating circuit. (6/61)

Intrinsic and extrinsic neuromodulation are both thought to be responsible for the flexibility of the neural circuits (central pattern generators) that control rhythmic behaviors. Because the two forms of modulation have been studied in different circuits, it has been difficult to compare them directly. We find that the central pattern generator for biting in Aplysia is modulated both extrinsically and intrinsically. Both forms of modulation increase the frequency of motor programs and shorten the duration of the protraction phase. Extrinsic modulation is mediated by the serotonergic metacerebral cell (MCC) neurons and is mimicked by application of serotonin. Intrinsic modulation is mediated by the cerebral peptide-2 (CP-2) containing CBI-2 interneurons and is mimicked by application of CP-2. Since the effects of CBI-2 and CP-2 occlude each other, the modulatory actions of CBI-2 may be mediated by CP-2 release. Although the effects of intrinsic and extrinsic modulation are similar, the neurons that mediate them are active predominantly at different times, suggesting a specialized role for each system. Metacerebral cell (MCC) activity predominates in the preparatory (appetitive) phase and thus precedes the activation of CBI-2 and biting motor programs. Once the CBI-2s are activated and the biting motor program is initiated, MCC activity declines precipitously. Hence extrinsic modulation prefacilitates biting, whereas intrinsic modulation occurs during biting. Since biting inhibits appetitive behavior, intrinsic modulation cannot be used to prefacilitate biting in the appetitive phase. Thus the sequential use of extrinsic and intrinsic modulation may provide a means for premodulation of biting without the concomitant disruption of appetitive behaviors.  (+info)

Marking behavior is innate and not learned in the Mongolian gerbil. (7/61)

We studied whether marking behavior in Mongolian gerbils would be innate or learned behavior. The marking behavior was defined as "animals rubbing their abdominal scent glands on small protruding objects". Between 21 and 90 days of age, Mongolian gerbils, which were kept under such conditions that they would be unable to learn this behavior, were observed at intervals of 5-15 days to find out if there were signs of the behavior or not. Six male and four female Mongolian gerbils were used for observing. Neonate Mongolian gerbils during the age of 3 to 28 days were fostered by ICR mother mice. Weaning Mongolian gerbils were then individually kept away from the others. Marking behavior was observed in 2 out of 6 males at 50 days of age and 2 of 4 females at 60 days and the mean frequency of the marking behavior for 10 min was 3.5 in the males and 5.0 in the females. These results suggest that marking behavior was innate and not learned behavior in Mongolian gerbils.  (+info)

Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. (8/61)

During walking, the six legs of a stick insect can be coordinated in different temporal sequences or gaits. Leg coordination in each gait is controlled and stabilized by coordinating mechanisms that affect the action of the segmental neuronal networks for walking pattern generation. At present, the motor program for single walking legs in the absence of movement-related coordinating intersegmental influences from the other legs is not known. This knowledge is a prerequisite for the investigation of the segmental neuronal mechanisms that control the movements of a leg and to study the effects of intersegmental coordinating input. A stick insect single middle leg walking preparation has been established that is able to actively perform walking movements on a treadband. The walking pattern showed a clear division into stance and swing phases and, in the absence of ground contact, the leg performed searching movements. We describe the activity patterns of the leg muscles and motoneurons supplying the coxa-trochanteral joint, the femur-tibial joint, and the tarsal leg joints of the middle leg during both walking and searching movements. Furthermore we describe the temporal coordination between them. During walking movements, the coupling between the leg joints was phase-constant; in contrast during searching movements, the coupling between the leg joints was dependent on cycle period. The motor pattern of the single leg generated during walking exhibits similarities with the motor pattern generated during a tripod gait in an intact animal. The generation of walking movements also drives the activity of thoraco-coxal motoneurons of the deafferented and de-efferented thoraco-coxal leg joint in a phase-locked manner, with protractor motoneurons being active during swing and retractor motoneurons being active during stance. These results show that for the single middle leg, a basic walking motor pattern is generated sharing similarities with the tripod gait and that the influence of the motor pattern generated in the distal leg joints is sufficient for driving the activity of coxal motoneurons so an overall motor pattern resembling forward walking is generated.  (+info)