Comparative analysis of evolutionary mechanisms of the hemagglutinin and three internal protein genes of influenza B virus: multiple cocirculating lineages and frequent reassortment of the NP, M, and NS genes. (1/825)

Phylogenetic profiles of the genes coding for the hemagglutinin (HA) protein, nucleoprotein (NP), matrix (M) protein, and nonstructural (NS) proteins of influenza B viruses isolated from 1940 to 1998 were analyzed in a parallel manner in order to understand the evolutionary mechanisms of these viruses. Unlike human influenza A (H3N2) viruses, the evolutionary pathways of all four genes of recent influenza B viruses revealed similar patterns of genetic divergence into two major lineages. Although evolutionary rates of the HA, NP, M, and NS genes of influenza B viruses were estimated to be generally lower than those of human influenza A viruses, genes of influenza B viruses demonstrated complex phylogenetic patterns, indicating alternative mechanisms for generation of virus variability. Topologies of the evolutionary trees of each gene were determined to be quite distinct from one another, showing that these genes were evolving in an independent manner. Furthermore, variable topologies were apparently the result of frequent genetic exchange among cocirculating epidemic viruses. Evolutionary analysis done in the present study provided further evidence for cocirculation of multiple lineages as well as sequestering and reemergence of phylogenetic lineages of the internal genes. In addition, comparison of deduced amino acid sequences revealed a novel amino acid deletion in the HA1 domain of the HA protein of recent isolates from 1998 belonging to the B/Yamagata/16/88-like lineage. It thus became apparent that, despite lower evolutionary rates, influenza B viruses were able to generate genetic diversity among circulating viruses through a combination of evolutionary mechanisms involving cocirculating lineages and genetic reassortment by which new variants with distinct gene constellations emerged.  (+info)

Tracheal aspirate as a substrate for polymerase chain reaction detection of viral genome in childhood pneumonia and myocarditis. (2/825)

BACKGROUND: Infectious respiratory disorders are important causes of childhood morbidity and mortality. Viral causes are common and may lead to rapid deterioration, requiring mechanical ventilation; myocardial dysfunction may accompany respiratory decompensation. The etiologic viral diagnosis may be difficult with classic methods. The purpose of this study was to evaluate polymerase chain reaction (PCR) as a diagnostic method for identification of causative agents. METHODS AND RESULTS: PCR was used to amplify sequences of viruses known to cause childhood viral pneumonia and myocarditis. Oligonucleotide primers were designed to amplify specific sequences of DNA virus (adenovirus, cytomegalovirus, herpes simplex virus, and Epstein-Barr virus) and RNA virus (enterovirus, respiratory syncytial virus, influenza A, and influenza B) genomes. Tracheal aspirate samples were obtained from 32 intubated patients and nucleic acid extracted before PCR. PCR results were compared with results of culture, serology, and antigen detection methods when available. In cases of myocarditis (n=7), endomyocardial biopsy samples were analyzed by PCR and compared with tracheal aspirate studies. PCR amplification of viral genome occurred in 18 of 32 samples (56%), with 3 samples PCR positive for 2 viral genomes. Amplified viral sequences included RSV (n=3), enterovirus (n=5), cytomegalovirus (n=4), adenovirus (n=3), herpes simplex virus (n=2), Epstein-Barr virus (n=1), influenza A (n=2), and influenza B (n=1). All 7 cases of myocarditis amplified the same viral genome from heart as found by tracheal aspirate. CONCLUSIONS: PCR is a rapid and sensitive diagnostic tool in cases of viral pneumonia with or without myocarditis, and tracheal aspirate appears to be excellent for analysis.  (+info)

Coinfection with influenza B virus does not affect association of Neisseria meningitidis with human nasopharyngeal mucosa in organ culture. (3/825)

There is an epidemiological association between influenza virus infection and meningococcal disease. Proposed mechanisms are the destruction of the normal epithelial barrier function of the upper respiratory tract by influenza virus or the expression of human or viral surface-exposed proteins that enhance bacterial adherence and/or invasion. To test these hypotheses, human nasopharyngeal mucosa specimens from a total of 19 individual donors were successfully infected with influenza B virus and then inoculated with serogroup B Neisseria meningitidis. Subsequent bacterial association with the epithelial surface was measured in three separate series of experiments by using transmission electron microscopy (n = 6), scanning electron microscopy (n = 6), and counting of viable bacteria within homogenates of explants (n = 7). Penetration of the mucosa was estimated by measuring the count of viable bacteria recovered from explants after exposure to sodium taurocholate. Bacterial association with the surface of explants was time dependent over 24 h of superinfection. Influenza virus did not positively or negatively influence bacterial attachment to or penetration of explant mucosa compared to those of uninfected controls, even when the period of preincubation with virus was extended to 7 days. When proteins were purified from mucosal epithelium and immobilized on nitrocellulose membranes, N. meningitidis attached predominantly to bands corresponding to proteins of 210 and 130 kDa. In the presence of influenza virus infection, these proteins were gradually lost over the course of 72 h. In conclusion, influenza B virus did not increase association of serogroup B N. meningitidis with human nasopharyngeal mucosa.  (+info)

Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). (4/825)

This report updates 1998 recommendations by the Advisory Committee on Immunization Practices (ACIP) on the use of influenza vaccine and antiviral agents (MMWR 1998;47[No. RR-6]:1-26). The principal changes include a) information on the influenza virus strains included in the 1999-2000 trivalent vaccine; b) discussion of the potential expanded use of influenza vaccine; c) new background information on live-attenuated influenza vaccines (LAIVs), neuraminidase-inhibitor drugs, and rapid diagnostic tests; d) new information on the epidemiology of influenza among travelers; and e) the addition of referenced citations. This report and other information on influenza can be accessed at the website for the Influenza Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC at .  (+info)

Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. (5/825)

Propagation of human influenza viruses in embryonated chicken eggs (CE) results in the selection of variants with amino acid substitutions near the receptor-binding site of the hemagglutinin (HA) molecule. To evaluate the mechanisms by which these substitutions enable human virus growth in CE, we studied the binding of 10 human influenza A (H1N1, H3N2) and B strains, isolated and propagated solely in MDCK cells, and of their egg-adapted counterparts to preparations of cellular membranes, gangliosides, sialylglycoproteins, and sialyloligosaccharides. All egg-adapted variants differed from nonadapted strains by increased binding to the plasma membranes of chorio-allantoic (CAM) cells of CE and by the ability to bind to CAM gangliosides. In addition, there was no decrease in affinity for inhibitors within allantoic fluid. These findings indicate that growth of human influenza viruses in CE is restricted because of their inefficient binding to receptors on CAM cells and that gangliosides can play an important role in virus binding and/or penetration. The effects of the egg-adaptation substitutions on the receptor-binding properties of the viruses include (i) enhancement of virus binding to the terminal Sia(alpha2-3)Gal determinant (substitutions in HA positions 190, 225 of H1N1 strains and in position 186 of H3N2 strains); (ii) a decrease of steric interference with more distant parts of the Sia(alpha2-3Gal)-containing receptors (a loss of glycosylation sites in positions 163 of H1 HA and 187 of type B HA); and (iii) enhanced ionic interactions with the negatively charged molecules due to charged substitutions at the tip of the HA [187, 189, 190 (H1), and 145, 156 (H3)]. Concomitantly with enhanced binding to Sia(alpha2-3)Gal-terminated receptors, all egg-adapted variants decreased their affinity for equine macroglobulin, a glycoprotein bearing terminal 6'-sialyl(N-acetyllactosamine)-moieties.  (+info)

Update: influenza activity--United States and worldwide, 1998-99 season, and composition of the 1999-2000 influenza vaccine. (6/825)

In collaboration with the World Health Organization (WHO), the WHO international network of collaborating laboratories, and state and local health departments, CDC conducts surveillance to monitor influenza activity and to detect antigenic changes in the circulating strains of influenza viruses. This report summarizes surveillance for influenza in the United States and worldwide during the 1998-99 influenza season and describes the composition of the 1999-2000 influenza vaccine.  (+info)

Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection. (7/825)

Influenza virus is characterized by frequent and unpredictable changes of the surface glycoproteins which enable the virus to escape the immune system. Approved vaccines which consist of the whole virus or the surface glycoproteins fail to induce broad specificity protection. We have previously reported that a peptide-based experimental recombinant vaccine which includes conserved epitopes of B and T lymphocytes was efficient in mice, leading to cross-strain, long-term protection. In the present study, this approach was adapted for the design of a human vaccine, based on epitopes recognized by the prevalent HLAs. These epitopes were expressed in Salmonella flagellin and tested for their efficacy in human/mouse radiation chimera in which human peripheral blood mononuclear cells (PBMC) are functionally engrafted. The vaccinated mice demonstrated clearance of the virus after challenge and resistance to lethal infection. The production of virus-specific human antibodies was also higher in this group. Control groups of either non-vaccinated, or vaccinated mice which had not been engrafted with the human PBMC, did not exhibit the protective immune response. FACS analysis showed that most human cells in the transplanted mice are CD8(+) and CD4(+). Hence, it may be concluded: (i) that the protection involves cellular mechanisms, but is most probably accomplished without direct lysis of influenza-infected pulmonary cells by cytotoxic T lymphocytes, but rather via a cytokine-mediated mechanism, (ii) that the human/mouse radiation chimera model may be of some value in the investigation of new vaccines, as an additional tool prior to clinical trials, and (iii) that the synthetic recombinant vaccine can induce a response in the human immune system and confers protection against influenza infection. Further investigation is needed to establish the efficacy of such a peptide vaccine in human subjects.  (+info)

Efficacy and safety of the neuraminidase inhibitor zanamivirin the treatment of influenza A and B virus infections. (8/825)

The efficacy and safety of zanamivir, administered 2x or 4x daily over 5 days, was evaluated in the treatment of influenza infections. A total of 1256 patients entered the study; 57% of those randomized had laboratory-confirmed influenza infection. The primary end point, "alleviation of major symptoms," was created to evaluate differences in clinical impact. In the overall population with or without influenza infection, zanamivir reduced the median number of days to reach this end point by 1 day (P=.012 2x daily vs. placebo; P=.014 4x daily vs. placebo). The reduction was greater in patients treated within 30 h of symptom onset, febrile at study entry, and in defined high-risk groups. Zanamivir reduced nights of disturbed sleep, time to resumption of normal activities, and use of symptom relief medications. It was well tolerated. These results suggest that zanamivir can significantly reduce the duration and overall symptomatic effect of influenza.  (+info)