Sensory perception: supernormal hearing in the blind? (1/1506)

A recent experimental study suggests that blind individuals may compensate for their lack of vision with better-than-normal hearing. This provides support for a view dating back to 18th century philosophers, but the data raise as many problems as they solve.  (+info)

Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. (2/1506)

Hearing loss is most often the result of hair-cell degeneration due to genetic abnormalities or ototoxic and traumatic insults. In the postembryonic and adult mammalian auditory sensory epithelium, the organ of Corti, no hair-cell regeneration has ever been observed. However, nonmammalian hair-cell epithelia are capable of regenerating sensory hair cells as a consequence of nonsensory supporting-cell proliferation. The supporting cells of the organ of Corti are highly specialized, terminally differentiated cell types that apparently are incapable of proliferation. At the molecular level terminally differentiated cells have been shown to express high levels of cell-cycle inhibitors, in particular, cyclin-dependent kinase inhibitors [Parker, S. B., et al. (1995) Science 267, 1024-1027], which are thought to be responsible for preventing these cells from reentering the cell cycle. Here we report that the cyclin-dependent kinase inhibitor p27(Kip1) is selectively expressed in the supporting-cell population of the organ of Corti. Effects of p27(Kip1)-gene disruption include ongoing cell proliferation in postnatal and adult mouse organ of Corti at time points well after mitosis normally has ceased during embryonic development. This suggests that release from p27(Kip1)-induced cell-cycle arrest is sufficient to allow supporting-cell proliferation to occur. This finding may provide an important pathway for inducing hair-cell regeneration in the mammalian hearing organ.  (+info)

Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. (3/1506)

The common occurrence of hearing loss in both humans and mice, and the anatomical and functional similarities of their inner ears, attest to the potential of mice being used as models to study inherited hearing loss. A large-scale, auditory screening project is being undertaken at The Jackson Laboratory (TJL) to identify mice with inherited hearing disorders. To assess hearing sensitivity, at least five mice from each inbred strain had auditory brainstem response (ABR) thresholds determined. Thus far, we have screened 80 inbred strains of mice; 60 of them exhibited homogeneous ABR threshold values not significantly different from those of the control strain CBA/CaJ. This large database establishes a reliable reference for normal hearing mouse strains. The following 16 inbred strains exhibited significantly elevated ABR thresholds before the age of 3 months: 129/J, 129/ReJ, 129/SvJ, A/J, ALR/LtJ, ALS/LtJ, BUB/BnJ, C57BLKS/J, C57BR/cdJ, C57L/J, DBA/2J, I/LnJ, MA/MyJ, NOD/LtJ, NOR/LtJ, and SKH2/J. These hearing impaired strains may serve as models for some forms of human non-syndromic hearing loss and aid in the identification of the underlying genes.  (+info)

Inner ear damage in guinea pigs exposed to stable and impulse noise. (4/1506)

OBJECTIVE: To investigate the inner ear damage after exposure to stable noise, impulse noise and stable plus impulse noise in guinea pigs. METHODS: Ninety-six healthy guinea pigs were divided into 3 equal groups. (1) Stable noise group: exposed to 110 dBA stable noise for 3 days, 4 hours per day. (2) Impulse noise group: exposed to 165 dBA simulated cannon fire impulse noise 10 times successively at an interval of 10 seconds. (3) stable plus impulse noise group: exposed to the same stable noise as that in the first group, then after a 2-hour rest, the animals were followed with impulse noise exposures as that in the second group. After those exposure, each of the 3 groups was further divided into 4 subgroups according to the time after the noise exposure, namely, the right after, 7 d, 14 d and 30 d groups. The evoked cortical potential responses to click and tone burst stimulation sound were examined. The surface preparation and celloidine embedded serial section of the cochlea were observed under a light microscope. RESULTS: Both the stable and impulse noise could increase the hearing threshold and damage the inner ear hair cells. The damage in the first group was relatively slight, whereas in group 3 the damage was more severe than that in the other 2 groups. CONCLUSION: For seamen who are working in heavy noise environment, corresponding measures should be taken to protect their ears from noise which induces hearing loss.  (+info)

Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. (5/1506)

This study proposes a classification system for neurons in the central nucleus of the inferior colliculus (ICC) that is based on excitation and inhibition patterns of single-unit responses in decerebrate cats. The decerebrate preparation allowed extensive characterization of physiological response types without the confounding effects of anesthesia. The tone-driven discharge rates of individual units were measured across a range of frequencies and levels to map excitatory and inhibitory response areas for contralateral monaural stimulation. The resulting frequency response maps can be grouped into the following three populations: type V maps exhibit a wide V-shaped excitatory area and no inhibition; type I maps show a more restricted I-shaped region of excitation that is flanked by inhibition at lower and higher frequencies; and type O maps display an O-shaped island of excitation at low stimulus levels that is bounded by inhibition at higher levels. Units that produce a type V map typically have a low best frequency (BF: the most sensitive frequency), a low rate of spontaneous activity, and monotonic rate-level functions for both BF tones and broadband noise. Type I and type O units have BFs that span the cat's range of audible frequencies and high rates of spontaneous activity. Like type V units, type I units are excited by BF tones and noise at all levels, but their rate-level functions may become nonmonotonic at high levels. Type O units are inhibited by BF tones and noise at high levels. The existence of distinct response types is consistent with a conceptual model in which the unit types receive dominant inputs from different sources and shows that these functionally segregated pathways are specialized to play complementary roles in the processing of auditory information.  (+info)

Single-unit responses in the inferior colliculus of decerebrate cats. II. Sensitivity to interaural level differences. (6/1506)

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.  (+info)

A problem with auditory processing? (7/1506)

Recent studies have found associations between auditory processing deficits and language disorders such as dyslexia; but whether the former cause the latter, or simply co-occur with them, is still an open question.  (+info)

Frequency selective effects of alcohol on auditory detection and frequency discrimination thresholds. (8/1506)

In the first of two experiments, the effects of ethyl alcohol on monaural and binaural thresholds for pure tones were measured for a range of frequencies. The results showed a frequency-specific effect in which low frequencies were more severely affected than higher ones. Also, monaural thresholds tended to be more affected by alcohol than binaural ones. The second experiment extended this exploration by measuring frequency discrimination at several different frequencies. In this case, we also obtained a frequency-dependent effect: the increase in discrimination thresholds above 1000 Hz was three times greater than that for lower frequencies. The data suggest that the choice of stimuli may influence the ability to detect changes in auditory performance after alcohol and may account in part for the differences among earlier studies. The results are consistent with the hypothesis that alcohol is acting centrally, at the level of mechanisms involved in the temporal and binaural summation of auditory signals, rather than influencing peripheral structures.  (+info)