Blockade of ATP-sensitive potassium channels in cerebral arterioles inhibits vasoconstriction from hypocapnic alkalosis in cats. (1/170)

BACKGROUND AND PURPOSE: Recent studies have shown that the cerebral arteriolar dilation from hypercapnic acidosis is blocked by agents which inhibit KATP channels. These findings suggested that this response is due to opening of KATP channels. Because the repose to CO2 is a continuum, with hypercapnic acidosis causing vasodilation and hypocapnic alkalosis causing vasoconstriction, it would be expected that the response to hypocapnic alkalosis would be due to closing of KATP channels. There are no studies of the effect of inhibition of KATP channels on the response to hypocapnic alkalosis. METHODS: We investigated the effect of 3 agents that in earlier studies were found to inhibit KATP channels--NG-nitro-L-arginine, hydroxylysine, and glyburide--on the cerebral arteriolar constriction caused by graded hypocapnia induced by hyperventilation in anesthetized cats equipped with cranial windows. RESULTS: Hypocapnic alkalosis caused dose-dependent vasoconstriction that was inhibited completely by each of the 3 inhibitors of KATP channels. The blockade induced by these agents was eliminated in the presence of topical L-lysine (5 micromol/L). CONCLUSIONS: The findings show that agents which inhibit ATP-sensitive potassium channels in cerebral arterioles inhibit the vasoconstriction from hypocapnic alkalosis. These and earlier results showing that inhibition of KATP channels inhibited dilation from hypercapnic acidosis demonstrate that the response to CO2 in cerebral arterioles is mediated by the opening and closing of KATP channels.  (+info)

Non-chemical inhibition of respiratory motor output during mechanical ventilation in sleeping humans. (2/170)

1. To determine the magnitude and time course of changes in respiratory motor output caused by non-chemical influences, six sleeping subjects underwent assist-control mechanical ventilation (ACMV) at increased tidal volume (VT). During ACMV, end-tidal PCO2 (PET,CO2) was either held at normocapnic levels (PET,CO2, 0.6-1.1 mmHg > control) by adding CO2 to the inspirate, or it was allowed to fall (hypocapnia). 2. Each sleeping subject underwent several repeat trials of twenty-five ACMV breaths (VT, 1.3 or 2.1 times control; peak flow rate, 30-40 l min-1; inspiratory time, +/- 0.3 s of control). The end-tidal to arterial PCO2 difference throughout normocapnic ACMV at raised VT was unchanged from eupnoeic levels during studies in wakefulness. 3. Normocapnic ACMV at both the smaller and larger increases in VT decreased the amplitude of respiratory motor output, as judged by decreased maximum rate of rise of mask pressure (Pm) (mean dPm/dtmax, 46-68% of control), reduced diaphragmatic EMG (to 55% of control) and reduced VT on the first spontaneous breath after ACMV (to 70% of control). Expiratory time (TE) was slightly prolonged (13-32% > control). This inhibition of amplitude of respiratory motor output progressed over the first five to seven ventilator cycles, was maintained over the remaining 18-20 cycles and persisted for three to five spontaneous breaths immediately following cessation of ACMV. 4. Hypocapnia did not further inhibit respiratory motor output amplitude beyond the effect of normocapnic ACMV at high VT, but did cause highly variable prolongation of TE when PET,CO2 was reduced by greater than 3 mmHg for at least five ventilator cycles. 5. These data in sleeping humans support the existence of a significant, non-chemical inhibitory influence of ACMV at increased VT and positive pressure upon the amplitude of respiratory motor output; this effect is manifested both during and following normocapnic mechanical ventilation.  (+info)

Effect of intravenous dipyridamole on cerebral blood flow in humans. A PET study. (3/170)

BACKGROUND AND PURPOSE: Dipyridamole increases the concentration of circulating adenosine, which is a potent vasodilator, by inhibition of uptake of adenosine into the erythrocytes, and hence produces coronary vasodilation. However, the effects of dipyridamole on cerebral circulation is not pronounced. This study investigates the effects of intravenous dipyridamole on cerebral blood flow (CBF) in humans with use of positron emission tomography (PET). METHODS: In each of 13 healthy subjects, CBF was measured using (15)O-labeled water and PET at rest and during hypercapnia, hypocapnia, and dipyridamole stress; corresponding CBF values were then compared. RESULTS: CBF values during dipyridamole stress were significantly lower than those measured at rest. The dipyridamole stress PaCO(2) was also significantly lower than the resting PaCO(2). The change in CBF during dipyridamole stress relative to PaCO(2) closely followed the relationship between CBF and PaCO(2) during hypocapnia. CONCLUSIONS: These results indicate that the observed decrease in CBF during dipyridamole stress was caused by a decrease in PaCO(2) rather than by any direct action of dipyridamole on CBF. The decrease in PaCO(2) during dipyridamole stress was most likely due to hyperventilation, which was a side effect of adenosine. These results support the hypothesis that circulating adenosine is largely prevented from binding to adenosine receptors of cerebral vessels by the blood-brain barrier.  (+info)

Splanchnic hemodynamics and gut mucosal-arterial PCO(2) gradient during systemic hypocapnia. (4/170)

The effects of hypocapnia [arterial PCO(2) (Pa(CO(2))) 15 Torr] on splanchnic hemodynamics and gut mucosal-arterial P(CO(2)) were studied in seven anesthetized ventilated dogs. Ileal mucosal and serosal blood flow were estimated by using laser Doppler flowmetry, mucosal PCO(2) was measured continuously by using capnometric recirculating gas tonometry, and serosal surface PO(2) was assessed by using a polarographic electrode. Hypocapnia was induced by removal of dead space and was maintained for 45 min, followed by 45 min of eucapnia. Mean Pa(CO(2)) at baseline was 38.1 +/- 1.1 (SE) Torr and decreased to 13.8 +/- 1.3 Torr after removal of dead space. Cardiac output and portal blood flow decreased significantly with hypocapnia. Similarly, mucosal and serosal blood flow decreased by 15 +/- 4 and by 34 +/- 7%, respectively. Also, an increase in the mucosal-arterial PCO(2) gradient of 10.7 Torr and a reduction in serosal PO(2) of 30 Torr were observed with hypocapnia (P < 0.01 for both). Hypocapnia caused ileal mucosal and serosal hypoperfusion, with redistribution of flow favoring the mucosa, accompanied by increased PCO(2) gradient and diminished serosal PO(2).  (+info)

Repetitive hyperpnoea causes peripheral airway obstruction and eosinophilia. (5/170)

Hyperpnoea of canine peripheral airways with dry air results in airway obstruction, mucosal damage, and inflammation. The purpose of this study was to evaluate the effect of repeated dry air challenge (DAC) on airway obstruction, reactivity and the development of airway inflammation in dogs. Canine peripheral airways received DAC (delivered under general anaesthesia through a bronchoscope) every 48 h for two weeks. Peripheral airway resistance and reactivity were measured prior to each DAC. After the final DAC, bronchoalveolar lavage fluid (BALF) cells and soluble mediators from challenged and control airways were measured. Repeated bronchoscopy had no effect on airway mechanics. Repeated DAC produced cumulative increases in peripheral airway resistance and peak obstructive response to DAC. The response to hypocapnia was also increased in airways receiving repeated DAC. However, when the response to agonists was expressed as a change from baseline, consistent significant increases were not observed. Repeated bronchoscopy produced insignificant changes in BALF cells and eicosanoid mediators. Repeated DAC produced marked eosinophilic inflammation and increased prostaglandins D2, E2, and F2alpha, as well as leukotrienes C4-E4. In conclusion, repeated dry air challenge in dogs in vivo causes persistent airway obstruction and inflammation not unlike that found in human asthma.  (+info)

A mechanism of central sleep apnea in patients with heart failure. (6/170)

BACKGROUND: Breathing is controlled by a negative-feedback system in which an increase in the partial pressure of arterial carbon dioxide stimulates breathing and a decrease inhibits it. Although enhanced sensitivity to carbon dioxide helps maintain the partial pressure of arterial carbon dioxide within a narrow range during waking hours, in some persons a large hyperventilatory response during sleep may lower the value below the apneic threshold, thereby resulting in central apnea. I tested the hypothesis that enhanced sensitivity to carbon dioxide contributes to the development of central sleep apnea in some patients with heart failure. METHODS: This prospective study included 20 men who had treated, stable heart failure with left ventricular systolic dysfunction. Ten had central sleep apnea, and 10 did not. The patients underwent polysomnography and studies of their ventilatory response to carbon dioxide. RESULTS: Patients who met the criteria for central sleep apnea had significantly more episodes of central apnea per hour than those without central sleep apnea (mean [+/-SD], 35+/-24 vs. 0.5+/-1.0 episodes per hour). Those with sleep apnea also had a significantly larger ventilatory response to carbon dioxide than those without central sleep apnea (5.1+/-3.1 vs. 2.1+/-1.0 liters per minute per millimeter of mercury, P=0.007), and there was a significant positive correlation between ventilatory response and the number of episodes of apnea and hypopnea per hour during sleep (r=0.6, P=0.01). CONCLUSIONS: Enhanced sensitivity to carbon dioxide may predispose some patients with heart failure to the development of central sleep apnea.  (+info)

Impeding O(2) unloading in muscle delays oxygen uptake response to exercise onset in humans. (7/170)

We tested whether the leftward shift of the oxygen dissociation curve of hemoglobin with hyperpnea delays the oxygen uptake (VO(2)) response to the onset of exercise. Six male subjects performed cycle ergometer exercise at a work rate corresponding to 80% of the ventilatory threshold (VT) VO(2) of each individual after 3 min of 20-W cycling under eupnea [control (Con) trial]. A hyperpnea procedure (minute ventilation = 60 l/min) was undertaken for 2 min before and during 80% VT exercise in hypocapnia (Hypo) and normocapnia (Normo) trials. In the Normo trial, the inspired CO(2) fraction was 3% to prevent hypocapnia. The subjects completed two repetitions of each trial. To determine the kinetic variables of VO(2) and heart rate (HR) at the onset of exercise, a nonlinear least-squares fitting was applied to the data averaged from two repetitions by a monoexponential model. The end-tidal CO(2) partial pressure before the onset of exercise was significantly lower in the Hypo trial than in the Con and Normo trials (22 +/- 1 vs. 38 +/- 3 and 36 +/- 1 mmHg, respectively, P < 0.05). The time constant of VO(2) and HR was significantly longer in the Normo trial (28 +/- 7 and 39 +/- 18 s, respectively) than in the Con trial (21 +/- 7, 34 +/- 16 s, respectively, P < 0.05). The VO(2) time constant of the Hypo trial (37 +/- 12 s) was significantly longer than that of the Normo trial, although no significant difference in the HR time constant was seen (Hypo, 41 +/- 28 s). These findings suggested that respiratory alkalosis delayed the kinetics of oxygen diffusion in active muscle as a result of the leftward shift of the oxygen dissociation curve of hemoglobin. This supports an important role for hemoglobin-O(2) offloading in setting the VO(2) kinetics at exercise onset.  (+info)

Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O(2) chemosensitivity. (8/170)

We studied the contributions of hypoxemia, hypocapnia, and hyperpnea to the acute hypoxic diuretic response (HDR) in humans and evaluated the role of peripheral O(2) chemosensitivity and renal hormones in HDR. Thirteen healthy male subjects (age 19-38 yr) were examined after sodium equilibration (intake: 120 mmol/day) during 90 min of normoxia (NO), poikilocapnic hypoxia (PH), and isocapnic hypoxia (IH) (days 1-3, random order, double blind), as well as normoxic voluntary hyperpnea (HP; day 4), matching ventilation during IH. O(2) saturation during PH and IH was kept equal to a mean level measured between 30 and 90 min of breathing 12% O(2) in a pretest. Urine flow during PH and IH (1.81 +/- 0.92 and 1.94 +/- 1.03 ml/min, respectively) but not during HP (1.64 +/- 0.96 ml/min) significantly exceeded that during NO (control, 1.38 +/- 0.71 ml/min). Urine flow increases vs. each test day's baseline were significant with PH, IH, and HP. Differences in glomerular filtration rate, fractional sodium clearance, urodilatin, systemic blood pressure, or leg venous compliance were excluded as factors of HDR. However, slight increases in plasma and urinary endothelin-1 and epinephrine with PH and IH could play a role. In conclusion, the early HDR in humans is mainly due to hypoxia and hypocapnia. It occurs without natriuresis and is unrelated to O(2) chemosensitivity (hypoxic ventilatory response).  (+info)