Contribution of cytochrome P-450 omega-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension. (41/954)

The present study evaluated the contribution of cytochrome P-450 omega-hydroxylase in modulating the reactivity of cremaster muscle arterioles in normotensive rats on high-salt (HS) and low-salt (LS) diet and in rats with reduced renal mass hypertension (RRM-HT). Changes in arteriolar diameter in response to ACh, sodium nitroprusside (SNP), ANG II, and elevated O(2) were measured via television microscopy under control conditions and following cytochrome P-450 omega-hydroxylase inhibition with 17-octadecynoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS). In normotensive rats on either LS or HS diet, resting tone was unaffected and arteriolar reactivity to ACh or SNP was minimally affected by cytochrome P-450 omega-hydroxylase inhibition. In RRM-HT rats, cytochrome P-450 omega-hydroxylase inhibition reduced resting tone and significantly enhanced arteriolar dilation to ACh and SNP. Treatment with 17-ODYA or DDMS inhibited arteriolar constriction to ANG II and O(2) in all the groups, although the degree of inhibition was greater in RRM-HT than in normotensive animals. These results suggest that metabolites of cytochrome P-450 omega-hydroxylase contribute to the altered reactivity of skeletal muscle arterioles to vasoconstrictor and vasodilator stimuli in RRM-HT.  (+info)

Enalapril in subantihypertensive dosage attenuates kidney proliferation and functional recovery in normotensive ablation nephropathy of the rat. (42/954)

Most studies on the antiproliferative action of angiotensin converting enzyme inhibitors (ACEI) were performed in a rat hypertensive remnant kidney model with 5/6 kidney ablation which raised objections about the antihypertensive effect of ACEI and the influence of other antihypertensive drugs administered to remnant kidney control rats. To prevent these objections, a normotensive 4/6 remnant kidney model was elaborated and a subantihypertensive dosage of enalapril was used to evaluate its antiproliferative action. Subtotally nephrectomized rats (Nx) markedly increased the remnant kidney weight during a 4-week period and this rise was prevented by the treatment with enalapril (NxE) (Nx +297+/-35 mg vs. sham-operated +145+/-32 mg, p<0.001; NxE +154+/-35 mg vs. Nx p<0.001). While collagen concentration in the kidney cortex was not increased in sham-operated rats (Sham) in comparison with the control group (Ctrl) at the beginning of the study, the subsequent increase was significant in the Nx group and enalapril did not attenuate this increase (Sham 148+/-5 mg/100 g w.w. vs. Nx 164+/-2 mg/100 g w.w., p<0.01; NxE 161+/-4 mg/100 g w.w. vs. Sham p<0.05). The tubular protein/DNA ratio increase, which was significant in the Nx group, was inhibited by enalapril (Nx 26.2+/-10.5 vs. NxE 15.3+/-2.6, p<0.05). The protein/DNA ratio was much lower in glomeruli, with no significant changes in either the Nx or NxE groups. Serum urea concentrations were slightly higher in the Nx group than in the sham-operated group, but markedly elevated in the NxE group (Nx 10.71+/-0.76 mmol/l vs. Sham 6.10+/-0.33 mmol/l, p<0.001; NxE 28.9+/-2.6 mmol/l vs. Sham p<0.001). Creatinine concentrations in the Nx group were increased in comparison with the sham-operated group and markedly increased in the NxE group (Nx 63.7+/-3.56 micromol/l vs. Sham 37.2+/-2.84 micromol/l, p<0.001; NxE 107.0+/-5.2 micromol/l vs. Sham p<0.001). The clearance of creatinine was lower in the Nx group than in the sham-operated group and was markedly reduced in the NxE group (Nx 0.89+/-0.06 ml/min.g kidney wt. vs. Sham 1.05+/-0.16 ml/min x g kidney wt., p<0.01; NxE 0.58+/-0.029 ml/min x g kidney wt. vs. Sham, p<0.001). Enalapril improved proteinuria in comparison with the Nx group (NxE 5.6+/-0.6 mg/24 h vs. Nx 16.1+/-3.4 mg/24 h, p<0.05). Thus remnant kidney proliferation is substantial even in normotensive rats. It includes both proliferation and collagen accumulation with partial recovery of kidney weight and function, but is accompanied by enhanced proteinuria. Enalapril attenuates the proliferation and decreases proteinuria but prolongs kidney function recovery.  (+info)

Erythropoietin does not affect nitric oxide system in rats with chronic renal failure. (43/954)

We investigated to see whether an altered role of nitric oxide (NO) system is involved in erythropoietin (EPO)-induced hypertension in chronic renal failure (CRF). Male Sprague-Dawley rats were five-sixths nephrectomized to induce CRF. Six weeks after the operation, EPO or vehicle was injected for another 6 weeks. Plasma and urine nitrite/nitrate (NOx) levels were determined. Expression of NO synthase (NOS) proteins in the aortae and kidneys were also determined. In addition, the isometric tension of isolated aorta in response to acetylcholine and nitroprusside was examined. Blood pressure progressively rose in CRF groups, the degree of which was augmented by EPO treatment. Plasma NOx levels did not differ among the groups, while urine NOx levels were lower in CRF groups. Endothelial NOS expression was lower in the kidney and aorta in CRF rats, which was not further affected by EPO-treatment. The inducible NOS expression in the kidney and aorta was not different among the groups. Acetylcholine and sodium nitroprusside caused dose-dependent relaxations of aortic rings, the degree of which was not altered by EPO-treatment. Taken together, EPO-treatment aggravates hypertension in CRF, but altered role of NO system may not be involved.  (+info)

Onset of glomerular hypertension with aging precedes injury in the spontaneously hypertensive rat. (44/954)

The changes in renal hemodynamics that develop with aging in spontaneously hypertensive rats (SHR) were examined. Micropuncture studies revealed that glomerular capillary pressure was elevated in SHR at 9 mo of age compared with 3-mo-old SHR and 9-mo-old normotensive Wistar-Kyoto rats. Glomerular hypertension developed because of a small increase in systemic blood pressure and a decline in preglomerular vascular resistance, allowing transmission of elevated systemic pressure to the glomerular capillaries. The hemodynamic alterations were not a compensatory response to injury, inasmuch as vascular and glomerular morphology were normal in 9-mo-old SHR. To determine the mechanism of these changes, the activity of several vasoactive systems was examined. Similar changes in renal hemodynamics were observed in young and old SHR after blockade of nitric oxide production and after intravenous administration of endothelin. However, ANG II produced a proportionally greater reduction in glomerular filtration rate than renal blood flow in older SHR. These data suggest that reduced endogenous activity of the renin-angiotensin system leads to glomerular hypertension in aging SHR. Late development of glomerular hypertension may contribute to the subsequent appearance of glomerular sclerosis and progressive renal failure in these rats.  (+info)

Effect of combination therapy of angiotensin-converting enzyme inhibitor plus calcium channel blocker on urinary albumin excretion in hypertensive microalbuminuric patients with type II diabetes. (45/954)

It has been demonstrated that antihypertensive treatment of hypertensive diabetic patients is quite effective in preventing macrovascular and microvascular complications and improving prognosis. Nevertheless, the target blood pressure level of antihypertensive treatment in hypertensive diabetic patients with microalbuminuria (i.e., with early diabetic nephropathy) remains to be established. In this study, we evaluated the effect of intensive blood pressure control (diastolic blood pressure <80 mmHg) on urinary albumin excretion in hypertensive, type II diabetic patients with microalbuminuria. We examined the effects of a combination therapy using an angiotensin-converting enzyme (ACE) inhibitor plus a long-acting calcium channel blocker (amlodipine), and compared them with the effect of an ACE inhibitor alone. Thirty hypertensive, type II diabetic patients with microalbuminuria were treated with either an ACE inhibitor alone (group I, n=17) or an ACE inhibitor plus amlodipine (group II, n=13) for 32 weeks. With treatment, blood pressures in both groups were significantly reduced, and diastolic blood pressure was lowered to a much greater extent in group II (76 +/- 2 mmHg) than in group I (83 +/- 2 mmHg, p < 0.05). Although the urinary albumin excretion rate was decreased in both groups, the decrease attained statistical significance only in group II (from 141 +/- 25 mg/day to 69 +/- 18 mg/day, p < 0.05); the extent of reduction in microalbuminuria during antihypertensive treatment was significantly greater in group II (50 +/- 10%) than in group I (14 +/- 13%, p < 0.05). In conclusion, this study showed that in hypertensive microalbuminuric type II diabetic patients, the combination of an ACE inhibitor plus amlodipine resulted in a more pronounced decreased in blood pressure (diastolic blood pressure <80 mmHg) and a greater reduction in urinary albumin excretion than did use of an ACE inhibitor alone. This combination strategy should thus be a more effective tool for obtaining optimal blood pressure control in patients with diabetic nephropathy.  (+info)

Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro. (46/954)

BACKGROUND: Angiotensin II is strongly incriminated in progressive renal injury. There is recent evidence that angiotensin II induces oxidative stress in vitro. We examined the capacity of angiotensin II to induce oxidative stress in vivo and the functional significance of such stress. The capacity of angiotensin II to induce the oxidant-sensitive gene heme oxygenase (HO) in vivo and in vitro was also examined. METHODS: Angiotensin II was administered via mini-osmotic pumps to rats maintained on standard diets. Indices of oxidative stress, including thiobarbituric acid reactive substance, carbonyl protein content, and HO activity, were determined. Indices of oxidative stress and functional markers were also determined in the DOCA salt model. The effect of angiotensin II was studied in rats maintained on antioxidant-deficient diets so as to examine the functional significance of oxidative stress induced by angiotensin II. We also explored the inductive effect of angiotensin II on HO in vivo and whether such actions occur in vitro. RESULTS: Angiotensin II administered in vivo increased kidney content of thiobarbituric acid reactive substances protein carbonyl content, and HO activity. These indices were not present in the kidney of rats treated with DOCA salt for three weeks. Such oxidative stress was functionally significant, since the administration of angiotensin II to rats maintained on a prooxidant diet demonstrated increased proteinuria and decreased creatinine clearance. The stimulatory effect on HO activity was due to induction of HO-1 mRNA, with HO-2 mRNA remaining unchanged. Expression of HO-1 was localized to the renal proximal tubules in vivo. We also demonstrate that angiotensin II at concentrations of 10-8 and 10-7 mol/L induces expression of HO-1 mRNA in LLC-PK1 cells. CONCLUSIONS: Angiotensin II induces oxidative stress in vivo, which contributes to renal injury. This study also demonstrates that angiotensin II induces renal HO activity caused by up-regulation of HO-1 in renal proximal tubules. Finally, angiotensin II directly induces HO-1 in renal proximal tubular epithelial cells in vitro.  (+info)

Effects of ACE inhibition and bradykinin antagonism on cardiovascular changes in uremic rats. (47/954)

BACKGROUND: Cardiovascular death continues to be a major problem in renal failure. Structural abnormalities of the heart and the vasculature contribute to the increased cardiovascular risk. They are ameliorated by angiotensin-converting enzyme (ACE) inhibitors, but because of the nonspecifity of ACE inhibition, it is uncertain whether the beneficial effect is mediated by interfering with angiotensin II (Ang II) or by modulating other effector systems, for example, bradykinin. METHODS: To assess a potential role of bradykinin, subtotally nephrectomized Sprague-Dawley rats (SNX) received either the ACE inhibitor Ramipril (Rami, 0.2 mg/kg body weight p.o.), the specific B2 bradykinin receptor antagonist Hoe140 (0.2 mg/kg body weight, s.c.), or a combination of both, and were compared to sham-operated controls. To separately assess the effect of Ramipril on development and reversal of structural abnormalities, animals were either treated from the third day after SNX or from the fourth week after SNX onward (0.01 mg/kg body weight, p.o.). RESULTS: Heart and aorta were evaluated by morphometric and stereologic techniques. The weight of the perfused left ventricle, as an index of cardiac hypertrophy, was significantly higher in untreated SNX. While it was significantly lower in animals with early and late Ramipril treatment, the beneficial effect was completely antagonized by Hoe140. The wall-to-lumen ratio of intramyocardial arterioles was significantly higher in untreated SNX compared with controls, but failed to be modified by administration of either Ramipril or Hoe140. In the heart, the intercapillary distance was significantly higher in SNX, but it was not lowered by either early or late Ramipril or Hoe140 treatment. Treatment of SNX with Hoe140 alone, however, resulted in a marked further increase in intercapillary distance. The wall thickness of the aorta was significantly higher in SNX than in controls; early and late Ramipril treatment prevented such increase, and this effect was antagonized by Hoe140. CONCLUSION: These findings illustrate that bradykinin plays an important role for the beneficial effect of Ramipril in preventing (and potentially reversing) abnormal cardiovascular structure in uremic hypertensive rats.  (+info)

Red cell Na+/Li+ countertransport and Na+/H+ exchanger isoforms in human proximal tubules. (48/954)

BACKGROUND: Increased activity of the Na+/Li+ countertransporter (SLC) is a well-recognized intermediate phenotype of hypertension and diabetic nephropathy and may indicate a predisposition to hypertension. Previous work has attempted to link this membrane transport marker to altered Na+ reabsorption in the proximal tubule. Since the Na+/H+ exchanger (NHE) isoforms 1 and 3 are expressed in the basolateral and apical membranes of the proximal tubule, respectively, we investigated the relationship between these transport proteins and red cell SLC to examine whether the peripheral blood transport phenotype is associated with altered levels of transport proteins in the proximal tubule. METHODS: Proximal tubules were prepared from human nephrectomy specimens. NHE-1 and NHE-3 were detected on Western blots by specific antibodies. Red cell SLC was also measured. RESULTS: Both NHE-1 and NHE-3 proteins were demonstrated, with molecular weights of 97 and 85 kD, respectively. SLC was very strongly correlated with the level of NHE-3 protein (r = 0.78, P < 0.001) and was negatively related to NHE-1 protein (r = -0.32). In multiple regression analysis, only NHE-3 and NHE-1 protein levels were significant predictors of red cell SLC, accounting for up to about 70% of the variance of this parameter. CONCLUSIONS: We conclude that red cell SLC may be a marker of increased NHE-3 protein expression in the proximal tubule, which may account for the blunted pressure natriuresis and predisposition to hypertension.  (+info)