Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen-activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation. (1/545)

We have shown recently that interleukin (IL)-2 activates the mitogen-activated protein (MAP) kinase family members p38 (HOG1/stress-activated protein kinase II) and p54 (c-Jun N-terminal kinase/stress-activated protein kinase I). Furthermore, the p38 MAP kinase inhibitor SB203580 inhibited IL-2-driven T cell proliferation, suggesting that p38 MAP kinase might be involved in mediating proliferative signals. In this study, using transfected BA/F3 cell lines, it is shown that both the acidic domain and the membrane-proximal serine-rich region of the IL-2Rbeta chain are required for p38 and p54 MAP kinase activation and that, as for p42/44 MAP kinase, this activation requires the Tyr338 residue of the acidic domain, the binding site for Shc. It is well established that the acidic domain of the IL-2Rbeta chain is dispensable for IL-2-driven proliferation, and thus our observations suggest that neither p38 nor p54 MAP kinase activation is required for IL-2-driven proliferation of BA/F3 cells. In addition, the tetravalent guanylhydrazone inhibitor of proinflammatory cytokine production, CNI-1493, can block the activation of p54 and p38 MAP kinases by IL-2 but has no effect on IL-2-driven proliferation of BA/F3 cells, activated primary T cells, or a cytotoxic T cell line. Furthermore, our observations provide evidence for the existence of an additional, unknown target of the p38 MAP kinase inhibitor SB203580, the activation of which is essential for mitogenic signaling by IL-2.  (+info)

Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. (2/545)

BACKGROUND: Despite the advent of dialysis, survival with acute renal failure when associated with multiorgan failure is poor. The development of lung injury after shock or visceral ischemia has been shown; however, the effects of isolated renal ischemia/reperfusion injury (IRI) on the lungs are unclear. We hypothesized that isolated renal IRI could alter pulmonary vascular permeability (PVP) and that macrophages could be important mediators in this response. METHODS: Rats (N = 5 per group) underwent renal ischemia for 30 minutes, followed by reperfusion. Lung vascular permeability was evaluated by quantitation of Evans blue dye extravasation from vascular space to lung parenchyma at 1, 24, 48, or 96 hours after reperfusion. Serum was collected for blood urea nitrogen and creatinine at each time point. To examine the role of the macrophage, the macrophage pacifant CNI-1493, which inhibits the release of macrophage-derived inflammatory products, was administered in a blinded fashion during renal IRI. RESULTS: PVP was significantly (P < 0.05) increased at 24 hours and peaked at 48 hours after IRI compared with shams as well as baseline levels. PVP after IRI became similar to shams after 96 hours. This correlated with increases in blood urea nitrogen and creatinine at similar time points. At 48 hours, CNI-1493 significantly abrogated the increase in PVP compared with IRI alone. However, CNI-1493 did not alter the course of the acute renal failure. Pulmonary histology demonstrated interstitial edema, alveolar hemorrhage, and red blood cell sludging after renal IRI, which was partially attenuated by CNI-1493. CONCLUSIONS: Increased PVP develops after isolated renal IRI, and macrophage-derived products are mediators in this response. These findings have implications for understanding the mechanisms underlying respiratory dysfunction associated with acute renal failure.  (+info)

Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. (3/545)

The majority of clinically used inotropes act by increasing cytosolic calcium levels, which may hypothetically worsen reperfusion stunning and provoke arrhythmias. We tested the hypothesis that the calcium sensitizer levosimendan (levo) given during ischemia alone or ischemia and reperfusion would improve reperfusion function without promoting arrhythmias. The Langendorff-perfused guinea pig heart, subjected to 40-min low-flow ischemia (0.4 ml/min) with or without levo (10-300 nM) given during ischemia or ischemia/reperfusion was used. Left ventricular developed pressure (LVDP) was used as an index of mechanical function. The effect of levo (300 nM) or dobutamine (0.1 microM) on the incidence of ischemia/reperfusion arrhythmias was also investigated. Control hearts (vehicle-perfused) had LVDPs of 69.4 +/- 2.1 mm Hg whereas hearts treated with levo during ischemia and reperfusion (300 nM) had LVDPs of 104.5 +/- 2.7 mm Hg (p <.05). Hearts treated with levo during ischemia alone (10 nM) had reperfusion LVDPs of 95.8 +/- 4.2 mm Hg (p <.05) after 30-min reperfusion. Hearts treated with both levo and 10 microM glibenclamide (K(ATP) channel blocker) during ischemia had reperfusion LVDPs of 73.4 +/- 4.3 mm Hg after 30-min reperfusion. Of control hearts, 25% developed reperfusion ventricular tachycardia but not ventricular fibrillation. Levo-treated hearts had no ischemia/reperfusion arrhythmias whereas 83% (p <.05 versus control) of dobutamine-treated hearts developed ventricular tachycardia and 33% (p <.05 versus levo) developed reperfusion ventricular fibrillation. Levo improved reperfusion function without promoting arrhythmias in this model. This was possibly achieved by opening the K(ATP) channels during ischemia and sensitizing myocardial contractile apparatus instead of elevating cytosolic calcium levels in reperfused hearts.  (+info)

Drug binding to cardiac troponin C. (4/545)

Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC.  (+info)

Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney. (5/545)

It is assumed that increased oxidative stress contributes to the development of complications in diabetes. In this study, several markers of protein structural modifications directly induced by free radicals were investigated in the liver and kidney cytosolic fractions of rats with streptozotocin-induced diabetes. Sulfydryl residue and side-chain amino group analyses, as well as immunoblotting and chromatographic measurements of protein-bound carbonyl, suggest that protein oxidative modification is not increased by diabetes, with the exception of sulfydryl groups in renal cytosol. The levels of the glycation-derived carbonyl N epsilon-fructosyl-lysine are significantly increased by diabetes. Furthermore, unchanged proteolytic activity against in vivo-oxidized proteins, significant decreases both in activity against H2O2-modified proteins and in proteasome activity, measured by the degradation of a specific fluorogenic substrate, suggest that the unchanged oxidative protein modification in the diabetic state cannot be attributed to an increased cytosolic proteolytic activity in these tissues. These results provide evidence against a generalized increase in protein oxidative damage and demonstrate a diabetes-induced alteration in cytosolic proteolytic pathways, suggesting that proteasome activity may be impaired in these organs.  (+info)

W-7 induces [Ca(2+)](i) increases in Madin-Darby canine kidney (MDCK) cells. (6/545)

The effect of W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride] on Ca(2+) signaling in Madin-Darby canine kidney cells was investigated. W-7 (0.1-1 mM) induced a [Ca(2+)](i) increase, which comprised an initial increase and a plateau. Ca(2+) removal inhibited the Ca(2+) signals by 80%, suggesting that W-7 activated external Ca(2+) influx and internal Ca(2+) release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (2 microM) and the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished the internal Ca(2+) release induced by 0.5 mM W-7; conversely, pretreatment with W-7 prevented thapsigargin and carbonylcyanide m-chlorophenylhydrazone from releasing internal Ca(2+). W-7 (0.2 mM) induced Mn(2+) quench of fura-2 fluorescence, which was inhibited by La(3+) (0.1 mM) by 80%. La(3+) (0.1 mM) partly inhibited 0.2 mM W-7-induced [Ca(2+)](i) increase. Addition of 5 mM Ca(2+) induced a significant [Ca(2+)](i) increase after pretreating with 0.2 to 1 mM W-7 in Ca(2+)-free medium for 5 min, suggesting that W-7 induced capacitative Ca(2+) entry. W-7 (0.5 mM) potentiated the capacitative Ca(2+) entry induced by 1 microM thapsigargin by 15%. Pretreatment with aristolochic acid (40 microM) to inhibit phospholipase A(2) reduced 0.5 mM W-7-induced internal Ca(2+) release and external Ca(2+) influx by 25 and 80%, respectively. Inhibition of phospholipase C with U73122 (2 microM) or inhibition of phospholipase D with propranolol (0.1 mM) had no effect on the internal Ca(2+) release induced by 0.5 mM W-7. It remains unclear whether W-7 induced [Ca(2+)](i) increases via inhibition of calmodulin. Three other calmodulin inhibitors (phenoxybenzamine, trifluoperazine, and fluphenazine-N-chloroethane) did not alter resting [Ca(2+)](i).  (+info)

Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. (7/545)

Quantitative information on the uptake and distribution of Al at the cellular level is required to understand mechanisms of Al toxicity, but direct measurement of uptake across the plasma membrane has remained elusive. We measured rates of Al transport across membranes in single cells of Chara corallina using the rare (26)Al isotope, an emerging technology (accelerator mass spectrometry), and a surgical technique for isolating subcellular compartments. Accumulation of Al in the cell wall dominated total uptake (71-318 microgram m(-2) min(-1)), although transport across the plasma membrane was detectable (71-540 ng m(-2) min(-1)) within 30 min of exposure. Transport across the tonoplast was initially negligible, but accelerated to rates approximating uptake across the plasma membrane. The avacuolate protoplasm showed signs of saturation after 60 min, but continued movement across the plasma membrane was supported by sequestration in the vacuole. Saturation of all compartments was observed after 12 to 24 h. Accumulation of Al in the cell wall reflected variation in [Al(3+)] induced by changes in Al supply or complexing ligands, but was unaffected by pH. In contrast, transport across the plasma membrane peaked at pH 4.3 and increased when [Al(3+)] was reduced by complexing ligands. Cold temperature (4 degrees C) reduced accumulation in the cell wall and protoplasm, whereas 2,4-dinitrophenol and m-chlorocarbonylcyanidephenyl hydrazone increased membrane transport by 12- to 13-fold. Our data suggest that the cell wall is the major site of Al accumulation. Nonetheless, membrane transport occurs within minutes of exposure and is supported by subsequent sequestration in the vacuole. The rapid delivery of Al to the protoplasm suggests that intracellular lesions may be possible.  (+info)

Selection for high immunogenicity in drug-resistant sublines of murine lymphomas demonstrated by plaque assay. (8/545)

The immunogenicity of lymphoma L1210 and three L1210 sublines, resistant to methylglyoxal bis(guanylhydrazone), 4,4'-diacetyldiphenylurea bis(guanylhydrazone), or guanazole (L1210/GZL), respectively, was evaluated. Syngeneic DBA/2J mice were given a single i.p. injection of serially diluted suspension of irradiated cells from L1210 or L1210 sublines. Five days later spleen cells from the immunized mice were tested for the presence of plaque-forming cells using the immunizing lymphoma cell lines as target. Sera collected from the animals were examined for cytolytic antibody activity by lysis in gel using the same target cells. For comparison, the H-2 immunogenicity of L1210 and its sublines was investigated in H-2-incompatible allogeneic mice. The following results were obtained. (a) All the sublines showed increased immunogenicity and susceptibility to lysis as compared to L1210 cells. The number of plaque-forming cells/spleen ranged from 100 for L1210 to 4450 for L1210/GZL, the most immunogenic subline, and the antibody titer ranged from 1/8 for L1210 to 1/128 for L1210/GZL. (b) All the sublines carried common tumor-associated antigens that apparently made primary contributions to the increased immunogenicity. (c) The common tumor-associated antigens were also expressed on L1210 cells, although in a lesser defree, as evidenced by the definite, albeit low, capacity of L1210 cells to absorb DBA/2J anti-L1210/GZL antibodies. (d) Spleen and thymus cells of DBA/2J mice as well as unrelated murine ascites tumor cells did not cause significant absorption of these antibodies. (e) Only a partial inverse relationship could be demonstrated between tumor-associated antigens but the lowest for H-2. The above results would seem compatible with the hypothesis that the increased immunogenicity of drug-resistant L1210 sublines is attributable to the selection of preexisting highly immunogenic cells during immunosuppression by treatments selecting for drug resistance.  (+info)