Blocking angiotensin II ameliorates proteinuria and glomerular lesions in progressive mesangioproliferative glomerulonephritis. (1/482)

BACKGROUND: The renin-angiotensin system is thought to be involved in the progression of glomerulonephritis (GN) into end-stage renal failure (ESRF) because of the observed renoprotective effects of angiotensin-converting enzyme inhibitors (ACEIs). However, ACEIs have pharmacological effects other than ACE inhibition that may help lower blood pressure and preserve glomerular structure. We previously reported a new animal model of progressive glomerulosclerosis induced by a single intravenous injection of an anti-Thy-1 monoclonal antibody, MoAb 1-22-3, in uninephrectomized rats. Using this new model of progressive GN, we examined the hypothesis that ACEIs prevent the progression to ESRF by modulating the effects of angiotensin II (Ang II) on the production of transforming growth factor-beta (TGF-beta) and extracellular matrix components. METHODS: We studied the effect of an ACEI (cilazapril) and an Ang II type 1 receptor antagonist (candesartan) on the clinical features and morphological lesions in the rat model previously reported. After 10 weeks of treatment with equihypotensive doses of cilazapril, cilazapril plus Hoe 140 (a bradykinin receptor B2 antagonist), candesartan, and hydralazine, we examined systolic blood pressure, urinary protein excretion, creatinine clearance, the glomerulosclerosis index, and the tubulointerstitial lesion index. We performed a semiquantitative evaluation of glomerular immunostaining for TGF-beta and collagen types I and III by immunofluorescence study and of these cortical mRNA levels by Northern blot analysis. RESULTS: Untreated rats developed massive proteinuria, renal dysfunction, and severe glomerular and tubulointerstitial injury, whereas uninephrectomized control rats did not. There was a significant increase in the levels of glomerular protein and cortical mRNA for TGF-beta and collagen types I and III in untreated rats. Cilazapril and candesartan prevented massive proteinuria, increased creatinine clearance, and ameliorated glomerular and tubulointerstitial injury. These drugs also reduced levels of glomerular protein and cortical mRNA for TGF-beta and collagen types I and III. Hoe 140 failed to blunt the renoprotective effect of cilazapril. Hydralazine did not exhibit a renoprotective effect. CONCLUSION: These results indicate that ACEIs prevent the progression to ESRF by modulating the effects of Ang II via Ang II type 1 receptor on the production of TGF-beta and collagen types I and III, as well as on intrarenal hemodynamics, but not by either increasing bradykinin activity or reducing blood pressure in this rat model of mesangial proliferative GN.  (+info)

Haemodynamic adaptation at rest and during exercise to long-term antihypertensive treatment with combination of beta-receptor blocking and vasodilator agent. (2/482)

Systemic and pulmonary haemodynamics were studied at rest in the supine and upright position, and during exercise in the sitting position at 75 and 150 Watt, in 13 hypertensive men aged 50-8 +/- 8-7 years before and after 13 months treatment with oral oxprenolol (120 to 160 mg t.i.d.) supplemented by oral hydrallazine (50 to 75 mg t.i.d.) during the last 6 months. Pressures were recorded by means of catheters inserted percutaneously into the pulmonary and brachial artery; cardiac output was determined according to Fick. Treatment resulted in a significant reduction of systemic systolic, diastolic, and mean pressures at rest in the supine position and during exercise, and of systolic pressures in the upright posture. Pulmonary systolic and mean pressures increased slightly at rest in the supine position and during exercise, and no changes occurred at rest in the upright position. The left ventricular filling pressure was unchanged at rest both in the supine and upright position; it increased slightly during exercise. The haemodynamic changes by which systemic pressure was reduced were those typical of beta-adrenergic blockade: reduction of cardiac output resulting from a decrease of both heart rate and stroke volume, while the total systemic vascular resistance was unchanged at rest in the supine position but increased in the upright posture and during exercise. The A-V O2 difference increased remarkably. This long-term observation again suggests that the acute haemodynamic effects of an antihypertensive regimen can be modified during long-term application. It did not give evidence of a readjustment of the vascular resistance occurring, at least not in the upright position and during exercise, as has been suggested for long-term beta-adrenergic blockade.  (+info)

Long-term treatment with angiotensin converting enzyme inhibitor restores reduced calcitonin gene-related peptide-containing vasodilator nerve function in mesenteric artery of spontaneously hypertensive rats. (3/482)

Effects of long-term treatment with angiotensin converting enzyme (ACE) inhibitor on decreased function of calcitonin gene-related peptide (CGRP)-containing vasodilator nerves (CGRP nerves) in mesenteric resistance artery were investigated in spontaneously hypertensive rats (SHR). Eight-week-old SHR were treated for 7 weeks with 0.1% captopril, 0.01% temocapril, 0.05% pindolol or 0.005% hydralazine in drinking water. Long-term treatment with each drug significantly lowered mean blood pressure of SHR. In isolated and perfused mesenteric vascular beds with active tone, periarterial nerve stimulation (PNS) (0.5 to 8 Hz) produced frequency-dependent vasodilations, which were abolished by CGRP(8-37) (CGRP-receptor antagonist) and significantly smaller in SHR than in normotensive Wistar Kyoto rats. Treatment of SHR with captopril and temocapril but not with pindolol and hydralazine resulted in significantly greater PNS-induced vasodilation than in non-treated SHR, but ACE-inhibitor treatment did not affect vasodilation induced by exogenous CGRP. In captopril-treated SHR preparations, PNS evoked significantly larger CGRP-like immunoreactive release than in non-treated SHR. In non-treated 15-week-old SHR preparations, direct perfusion of captopril or temocapril (0.1 microM and 1 microM) did not modify frequency-dependent vasodilation in response to PNS. These results suggest that long-term ACE inhibitor treatment prevents or restores CGRP nerve function reduction in SHR.  (+info)

Regulation of brain renin-angiotensin system by benzamil-blockable sodium channels. (4/482)

Changes in the renin-angiotensin system (RAS) mRNAs in the brain and the kidney of rats after administration of DOCA and/or sodium chloride were assessed by use of a competitive PCR method. Benzamil, a blocker of amiloride-sensitive sodium channels, was infused intracerebroventricularly or intravenously for 7 days in DOCA-salt or renal hypertensive rats, and the effects of benzamil on the brain RAS mRNAs were determined. Renin and ANG I-converting enzyme (ACE) mRNAs were not downregulated in the brain of rats administered DOCA and/or salt; however, these mRNAs were decreased in the kidney. Intracerebroventricular infusion of benzamil decreased renin, ACE, and ANG II type 1 receptor mRNAs in the brain of DOCA-salt hypertensive rats but not in the brain of renal hypertensive rats. The gene expression of the brain RAS, particularly renin and ACE, is regulated differently between the brain and the kidney in DOCA-salt hypertensive rats, and benzamil-blockable brain sodium channels may participate in the regulation of the brain RAS mRNAs.  (+info)

A nitric oxide-mediated mechanism regulates lipolysis in human adipose tissue in vivo. (5/482)

1. Possible nitric oxide (NO)-mediated effects on lipolysis were investigated in vivo in human subcutaneous adipose tissue using microdialysis, as well as in vitro on isolated fat cells of non-obese, healthy volunteers. NO donors were added to the ingoing dialysate solvents. 2. Changes in lipolysis and local blood flow were investigated by measuring glycerol levels and ethanol ratios, respectively, in the microdialysates. 3. It was shown that the NO synthase inhibitor, N(G)-monomethyl L-arginine (L-NMMA), but not the biologically inactive enantiomer N(G)-monomethyl D-arginine (D-NMMA), increased glycerol levels in the microdialysates without causing a change of local blood flow. In addition, L-NMMA increased glycerol levels in the microdialysate when local blood flow was stimulated with hydralazine. 4. Nitric oxide gas as well as the NO donor, nitroglycerine, reduced glycerol release from isolated adipocytes in vitro. 5. Expression of inducible nitric oxide synthase (iNOS) in human adipose tissue was shown by Western blot analysis. Biologically active NOS was demonstrated by measuring total enzymatic activity. 6. In conclusion, the data demonstrate that inhibition of NO release in subcutaneous adipose tissue results in an increased lipolysis in vivo. These effects, which were also observed in vitro, are independent of local blood flow changes. Furthermore, the demonstration of enzymatic NOS activity and the expression of inducible nitric oxide synthase (iNOS) in adipose tissue indicate that locally synthesized NO may play a role in the physiological control of lipolysis in human adipose tissue.  (+info)

Ventricular adrenomedullin levels correlate with the extent of cardiac hypertrophy in rats. (6/482)

We investigated the pathophysiological significance of adrenomedullin (AM) in the development of left ventricular hypertrophy (LVH). LVH was produced by aortic banding (AB) in rats. The left ventricular weight/body weight (LV/BW) ratio, ventricular AM peptide and mRNA levels, and hemodynamics were measured at 1, 3, 7, and 21 days after the operation. Both LV/BW ratio and ventricular AM levels showed a significant increase from 1 day after the operation in the AB rats versus the sham-operated rats. Both increased in a time-dependent manner. The ventricular AM levels correlated with the LV/BW ratio (r=0.76, P<0.01). The AM mRNA levels were highly expressed at 1 day after the operation in the AB rats but showed no difference from 3 to 21 days after the operation between the AB and sham groups. The plasma AM levels showed a peak at 1 day after the operation in both groups. Then, we treated AB rats with an angiotensin-converting enzyme inhibitor (quinapril) in 2 doses (1 and 10 mg. kg-1. d-1) for 21 days. The quinapril treatment attenuated similarly both the LV/BW ratio and the ventricular AM levels. We also assessed the effects of AM and hydralazine administration for 7 days on the LV/BW ratio and hemodynamics of AB rats. Both AM and hydralazine administration reduced the blood pressure by approximately 10% compared with the nontreated AB rats, but a reduction of the LV/BW ratio was observed only in the AM-treated group (P<0.05). These results suggest that ventricular AM levels are elevated by chronic pressure overload in a time-dependent manner concomitant with the extent of LVH and that AM may play a pathophysiological role in the development of LVH in chronic pressure overload.  (+info)

Isradipine and insulin sensitivity in hypertensive rats. (7/482)

The present study was designed to investigate the effect of a reduction in blood pressure, by using the calcium channel antagonist isradipine, on insulin sensitivity and vascular responses to insulin in conscious spontaneously hypertensive male rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp technique. Two groups of rats received isradipine at a dose of 0.05 or 0.15 mg. kg-1. h-1, whereas a third group received a continuous infusion of vehicle (15% DMSO). Both doses of isradipine were found to decrease mean blood pressure (-25 +/- 4 mmHg at the dose of 0.05 mg. kg-1. h-1 and -20 +/- 2 mmHg at the dose of 0.15 mg. kg-1. h-1) and to improve insulin sensitivity. Moreover, in the rats treated with the low dose of isradipine, we observed vasodilations in renal, superior mesenteric, and hindquarter vascular beds. In the untreated group, the euglycemic infusion of insulin (4 mU. kg-1. min-1) was found to cause vasoconstrictions in superior mesenteric and hindquarter vascular beds, but no changes in mean blood pressure, heart rate, or renal vascular conductance were found. In contrast, in the isradipine-treated groups, the same dose of insulin was found to produce vasodilations in the renal vascular bed and to abolish the vasoconstrictor responses previously observed. We concluded that short-term treatment with isradipine in SHR can lower blood pressure and improve insulin sensitivity, mainly through hemodynamic factors, as supported by experiments with hydralazine as a positive vasodilator control.  (+info)

Fos expression in brain stem nuclei of pregnant rats after hydralazine-induced hypotension. (8/482)

Fos and dopamine beta-hydroxylase immunoreactivity were evaluated in the brain stems of 21-day pregnant and virgin female rats injected with either hydralazine (HDZ; 10 mg/kg iv) or vehicle. HDZ produced significant hypotension in both groups, although baseline blood pressure was lower in pregnant rats (96 +/- 2.5 mmHg) than in virgin female rats (121 +/- 2.8 mmHg). There were no differences in Fos immunoreactivity in the brain stems of pregnant and virgin female rats after vehicle treatment. HDZ-induced hypotension significantly increased Fos expression in both groups; however, the magnitude of the increases differed in the caudal ventrolateral medulla (CVL), the area postrema (AP), and the rostral ventrolateral medulla (RVL). Fos expression after HDZ in pregnant rats was augmented in noncatecholaminergic neurons of the CVL but was attenuated in the AP and in noncatecholaminergic neurons in the RVL. These results are consistent with differences in the sympathetic response to hypotension between pregnant and virgin female rats and indicate that the central response to hypotension may be different in pregnant rats.  (+info)