The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. (1/104)

hsp110 is one of major heat shock proteins of eukaryotic cells and is a diverged relative of the hsp70 family. It has been previously shown that hsp110 maintains heat-denatured luciferase in a soluble, folding competent state and also confers cellular heat resistance in vivo. In the present study the functional domains of hsp110 that are responsible for its chaperoning activity are identified by targeted deletion mutagenesis using the DnaK structure as the model. The chaperoning activity of mutants is assessed based on their ability to solubilize heat-denatured luciferase as well as to refold luciferase in the presence of rabbit reticulocyte lysate. It is shown that these functions require only an internal region of hsp110 that includes the predicted peptide binding domain and two immediately adjacent C-terminal domains. It is also shown that although hsp110 binds ATP, binding can be blocked by its C-terminal region.  (+info)

Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. (2/104)

In this study, in vitro RNA binding by members of the mammalian 70-kDa heat shock protein (Hsp) family was examined. We show that Hsp/Hsc70 and Hsp110 proteins preferentially bound AU-rich RNA in vitro. Inhibition of RNA binding by ATP suggested the involvement of the N-terminal ATP-binding domain. By using deletion mutants of Hsp110 protein, a diverged Hsp70 family member, RNA binding was localized to the N-terminal ATP-binding domain of the molecule. The C-terminal peptide-binding domain did not bind RNA, but its engagement by a peptide substrate abrogated RNA binding by the N terminus of the protein. Interestingly, removal of the C-terminal alpha-helical structure or the alpha-loop domain unique to Hsp110 immediately downstream of the peptide-binding domain, but not both, resulted in considerably increased RNA binding as compared with the wild type protein. Finally, a 70-kDa activity was immunoprecipitated from RNA-protein complexes formed in vitro between cytoplasmic proteins of human lymphocytes and AU-rich RNA. These findings support the idea that certain heat shock proteins may act as RNA-binding entities in vivo to guide the appropriate folding of RNA substrates for subsequent regulatory processes such as mRNA degradation and/or translation.  (+info)

The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. (3/104)

In eukaryotes, production of the diverse repertoire of molecular chaperones during normal growth and in response to stress is governed by the heat shock transcription factor HSF. The HSC82 and HSP82 genes, encoding isoforms of the yeast Hsp90 molecular chaperone, were recently identified as targets of the HSF carboxyl-terminal activation domain (CTA), whose expression is required for cell cycle progression during prolonged heat stress conditions. In the present study, we have identified additional target genes of the HSF CTA, which include nearly all of the heat shock-inducible members of the Hsp90 chaperone complex, demonstrating coordinate regulation of these components by HSF. Heat shock induction of SSE1, encoding a member of the Hsp110 family of heat shock proteins, was also dependent on the HSF CTA. Disruption of SSE1 along with STI1, encoding an established subunit of the Hsp90 chaperone complex, resulted in a severe synthetic growth phenotype. Sse1 associated with partially purified Hsp90 complexes and deletion of the SSE1 gene rendered cells susceptible to the Hsp90 inhibitors macbecin and geldanamycin, suggesting functional interaction between Sse1 and Hsp90. Sse1 is required for function of the glucocorticoid receptor, a model substrate of the Hsp90 chaperone machinery, and Hsp90-based repression of HSF under nonstress conditions. Taken together, these data establish Sse1 as an integral new component of the Hsp90 chaperone complex in yeast.  (+info)

Characterization of native interaction of hsp110 with hsp25 and hsc70. (4/104)

The 110 kDa heat shock protein (HSP) (hsp110) has been shown to be a diverged subgroup of the hsp70 family and is one of the major HSPs in mammalian cells [1,2]. In examining the native interactions of hsp110, we observed that it is found to reside in a large molecular complex. Immunoblot analysis and co-immunoprecipitation studies identified two other HSPs as components of this complex, hsc70 and hsp25. When examined in vitro, purified hsp25, hsp70 and hsp110 were observed to spontaneously form a large complex and to directly interact with one another. When luciferase was added to this in vitro system, it was observed to migrate into this chaperone complex following heat shock. Examination of two deletion mutants of hsp110 demonstrated that its peptide-binding domain is required for interaction with hsp25, but not with hsc70. The potential function of the hsp110-hsc70-hsp25 complex is discussed.  (+info)

The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. (5/104)

Both the Grp170 and Hsp110 families represent relatively conserved and distinct sets of stress proteins, within a more diverse category that also includes the Hsp70s. All of these families are found in a wide variety of organisms from yeasts to humans. Although Hsp110s or Grp170s are not Hsp70s any more than Hsp70s are Hsp110s or Grp170s, it is still reasonable to refer to this combination of related families as the Hsp70 superfamily based on arguments discussed above and since no obvious prokaryotic Hsp110 or Grp170 has yet been identified. These proteins are related to their counterparts in the Hsp70/Grp78 family of eukaryotic stress proteins but are characterized by significantly larger molecular weights. The members of the Grp170 family are characterized by C-terminal ER retention sequences and are ER localized in yeasts and mammals. As a Grp, Grp170 is recognized to be coregulated with other major Grps by a well-known set of stress conditions, sometimes referred to as the unfolded protein response (Kozutsumi et al 1988; Nakaki et al 1989). The Hsp110 family members are localized in the nucleus and cytoplasm and, with other major Hsps, are also coregulated by a specific set of stress conditions, most notably including hyperthermic exposures. Hsp110 is sometimes called Hsp105, although it would be preferable to have a uniform term. The large Hsp70-like proteins are structurally similar to the Hsp70s but differ from them in important ways. In both the Grp170 and Hspl10 families, there is a long loop structure that is interposed between the peptide-binding ,-domain and the alpha-helical lid. In the Hsp110 family and Grp170, there are differing degrees of expansion in the alpha-helical domain and the addition of a C-terminal loop. This gives the appearance of much larger lid domains for Hsp110 and Grp170 compared with Hsp70. Both Hsp110 and Grp170 families have relatively conserved short sequences in the alpha-helical domain in the lid, which are conserved motifs in numerous proteins (we termed these motifs Magic and TedWylee as discussed earlier). The structural differences detailed in this review result in functional differences between the large (Grp170 and Hspl10) members of the Hsp70 superfamily, the most distinctive being an increased ability of these proteins to bind (hold) denatured polypeptides compared with Hsc70, perhaps related to the enlarged C-terminal helical domain. However, there is also a major difference between these large stress proteins; Hsp110 does not bind ATP in vitro, whereas Grp170 binds ATP avidly. The role of the Grp170 and Hsp110 stress proteins in cellular physiology is not well understood. Overexpression of Hsp110 in cultured mammalian cells increases thermal tolerance. Grp170 binds to secreted proteins in the ER and may be cooperatively involved in folding these proteins appropriately. These roles are similar to those of the Hsp70 family members, and, therefore, the question arises as to the differential roles played by the larger members of the superfamily. We have discussed evidence that the large members of the superfamily cooperate with members of the Hsp70 family, and these chaperones probably interact with a large number of chaperones and cochaperones in their functional activities. The fundamental point is that Hsp110 is found in conjunction with Hsp70 in the cytoplasm (and nucleus) and Grp170 is found in conjunction with78 in tha ER in every eucaryotic cell examined from yeast to humans. This would strongly argue that Hsp110 Grp170 exhibit functions in eucaryotes not effectively performed by Hsp70s or Grp78, respectively. Of interest in this respect is the observation that all Hsp110s loss of function or deletion mutants listed in the Drosophila deletion project database are lethal. The important task for the future is to determine the roles these conserved molecular chaperones play in normal and physiologically stressed cells.  (+info)

Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. (6/104)

Several studies have confirmed that certain stress proteins can function as potent vaccines against a specific cancer when purified from the same tumor. Recent studies of two long-recognized but unstudied stress proteins, heat shock protein (hsp) 110 and glucose-regulated protein (grp) 170, have shown them to be efficient peptide chain-binding proteins. The present investigation examines the vaccine potential of hsp110 and grp170. First, it is shown that prior vaccination with hsp110 or grp170 purified from methylcholanthrene-induced fibrosarcoma caused complete regression of the tumor. In a second tumor model, hsp110 or grp170 purified from Colon 26 tumors led to a significant growth inhibition of this tumor. In addition, hsp110 or grp170 immunization significantly extended the life span of Colon 26 tumor-bearing mice when applied after tumor transplantation. A tumor-specific cytotoxic T lymphocyte response developed in the mice immunized with tumor-derived hsp110 or grp170. Furthermore, treatments of the mice with bone marrow-derived dendritic cells pulsed with these two proteins from tumor also elicited a strong antitumor response. Last, we showed that mild, fever-like hyperthermic conditions enhance the vaccine efficiency of hsp110 as well as heat shock cognate 70, but not grp170. These studies indicate that hsp110 and grp170 can be used in hsp-based cancer immunotherapy, that Ag-presenting dendritic cells can be used to mediate this therapeutic approach, and that fever-level hyperthermia can significantly enhance the vaccine efficiency of hsps.  (+info)

Induction of the HSP110/105 family in the rat hippocampus in cerebral ischemia and ischemic tolerance. (7/104)

Recently, the authors isolated a novel gene of the HSP110 family, ischemia responsive protein 94 kDa (irp94), and demonstrated the expression of this gene after transient forebrain ischemia. In the current study, the authors investigated the expression profiles of all HSP110 family members including hsp110/105 and osp94/apg-1, after transient forebrain ischemia using rat four-vessel occlusion model. Among three members of the HSP110 family, induction of hsp110/105 was the most prominent after ischemia. hsp110/105 mRNA expression was clearly enhanced from 4 to 24 hours after a 6-minute or longer ischemic period. First, hsp110/105 mRNA expression was induced in the dentate gyrus, and later in the pyramidal layer. HSP110/105 protein expression also was enhanced by a 6-minute or longer period of ischemia. Profiles of HSP110/105 expression after ischemia were similar to those of inducible HSP70. After transient forebrain ischemia for 10 minutes, HSP110/105 protein was induced in the dentate gyrus and the CA3 pyramidal layer, but not in the CA1 pyramidal neurons. However, 6 minutes of ischemia induced the HSP110/105 protein, as well as the HSP70 protein, in the CA1 region. CA1 pyramidal neurons expressing HSP110/105 acquired tolerance against subsequent severe ischemia. In conclusion, HSP110/105 showed the most prominent induction after ischemia among the three HSP110 gene family members. Colocalization of HSP110/105 and HSP70 in the CA1 neurons that acquired tolerance suggested that induced HSP110/105 might contribute to ischemic tolerance together with HSP70.  (+info)

Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. (8/104)

Several studies have shown that when purified from a tumor, certain heat shock proteins (HSPs) can function as effective vaccines against the same tumor by virtue of their ability to bind tumor-specific peptides. However, only a small fraction of the associated peptides would be expected to be immunogenic, in addition to which, the clinical application of this vaccine requires the availability of a surgical specimen of sufficient quantity for purification of the HSP. The present study describes a new approach for the development of natural HSP vaccines that do not have these limitations. This approach uses a recombinant HSP that is noncovalently bound to a recombinant tumor protein antigen by heat shock. HSP110 has been selected for this purpose, because it has been shown to be a highly efficient molecular chaperone in binding to large protein substrates. We show that a "natural chaperone complex" between HSP110 and the intracellular domain (ICD) of human epidermal growth factor receptor 2 protein (HER-2)/neu is formed by heat shock. This HSP110-ICD vaccine elicited both CD8(+) and CD4(+) T-cell responses against ICD as determined by an antigen-specific IFN-gamma production in an enzyme-linked immunospot assay (ELISPOT). In vivo depletion studies revealed that the CD8(+) T-cell response was independent of CD4(+) T-cell help. The HSP110-ICD complex also significantly enhanced ICD-specific antibody responses relative to that seen with ICD alone. No CD8(+) T cell or antibody response was detected against HSP110. The use of recombinant HSP110 to form natural chaperone complexes with large protein antigens represents a new and powerful approach for the design of protein-targeted cancer vaccines.  (+info)