EFFECTS OF LACTIC ACID-FORMING BACTERIA ON VIBRIO COMMA INOCULATED INTO INTESTINAL SEGMENTS OF RABBITS. (41/105)

Hattori, H. (Sankyo Co., Ltd., Tokyo, Japan), H. Misawa, I. Igarashi, and Y. Sugiya. Effects of lactic acid-forming bacteria on Vibrio comma inoculated into intestinal segments of rabbits. J. Bacteriol. 90:541-545. 1965.-Mixed inocula of Vibrio comma KC-4 and various lactic acid-forming bacteria were injected into the intestinal segments of rabbits (De and Chatterje, 1953) to observe the effects of the latter agents in altering the changes produced by strain KC-4. The animals were sacrificed 10 and 20 hr after inoculation. The inoculated intestinal segments were first examined grossly, and the amount of exudate in the segments, if any, was measured, after which the tissues were subjected to pathological examination. When KC-4 cells together with spore-bearing lactic acid-forming bacilli, strain P-22, or Lactobacillus casei were introduced, the intestinal segments showed few or no macroscopic and microscopic changes, and no accumulation of exudate. With mixed inoculation with lactic acid bacteria such as L. bulgaricus, L. acidophilus, Streptococcus lactis, and S. faecalis, changes were produced by strain KC-4. Macroscopically, no difference was discernible between the changes caused by mixed inoculation and those produced by single inoculation of KC-4. Upon pathological examination, however, it was seen that changes resulting from mixed inoculation were slightly less severe than those produced by inoculation with strain KC-4 only.  (+info)

Prof. Eber Landau, the very first chief of Histology and Embryology Department at the University of Lithuania. (42/105)

The article deals with the scientific activities of professor Eber Landau carried out in Estonia, Lithuania and Switzerland. Professor E. Landau was born November 8, 1878, in a merchant's family in Rezekne, Latvia. On leaving a classical high school in Riga, E. Landau studied at the Medical Faculty of Tartu University, graduating it in 1902. Later he improved his qualification in histology and anatomy at Villafrenk Zoology station, at the Histology Laboratory in Munich, and in St. Petersburg under the guidance of professor P. Leshaft. In 1906-1912 Landau worked as a prosector assistant at the Anatomy Institute, headed by professor A. Rauber, Tartu University. In 1912 he was elected a director of the Anthropology Institute, Tartu. On the outbreak of the First World War, E. Landau, as a Russian citizen, was called to the army and served as a neurologist and psychiatrist in Paris military hospitals. In 1918, E. Landau returned to Bern and for 5 years worked at the Anatomy Institute headed by prof. H. Strasner. In December 1, 1923, E. Landau moved to Kaunas University. Here he established the Department of Histology and Embryology and headed the Department till 1932. From 1932 till 1950 Eber Landau worked as a professor at the University of Lausanne. Professor E. Landau retired in 1950, but he still continued his research work in the field of neurohistology. Professor E. Landau died October 30, 1959. He left behind him an ample scientific heritage: 175 scientific publications and 12 doctoral theses done under his guidance.  (+info)

Teaching medical histology at the University of South Carolina School of Medicine: Transition to virtual slides and virtual microscopes. (43/105)

We describe how the histology course we teach to first-year medical students changed successfully from using glass slides and microscopes to using virtual slides and virtual microscopes. In 1988, we taught a classic medical histology course. Subsequently, students were loaned static labeled images on projection slides to introduce them to their microscope glass slides, and we made laser disks of histological images available in the teaching lab. In 2000, we placed the static labeled images and laboratory manual on the Web. We abandoned the Web-based approach in 2001. Faculty selected specific areas on microscope glass slides in student collections for scanning at a total magnification of 40, 100, 200, or 400. Christopher M. Prince of Petro Image, LLC, scanned the glass slides; digitized, encoded, and compressed (95%) the images; and placed them on CD-ROMs. The scanned images were viewed up to a magnification of 400 using the MrSID viewer (LizardTech software) and the computer as a virtual microscope. This viewer has many useful features, including effective microscope and telescope functions that provide greater versatility for sample study and speed in localizing structures than was possible with the actual microscope. Image detail is indistinguishable from that viewed under the light microscope at equivalent magnifications. Static labeled images were also placed on CD-ROMs to introduce students to the virtual slides. Students could view all the images on their CD-ROMs at any time and in any place with their laptop computers without going online. Students no longer rented light microscopes in 2002. Both students and faculty have shown strong support for using this approach to teaching histology during the past 2 years.  (+info)

Extended histopathology in immunotoxicity testing: interlaboratory validation studies. (44/105)

There has been considerable interest in the use of expanded histopathology as a primary screen for immunotoxicity assessment. To determine the utility of a semiquantitative histopathology approach for examining specific structural and architectural changes in lymphoid tissues, a validation effort was initiated. This study addresses the interlaboratory reproducibility of extended histopathology, using tissues from studies of ten test chemicals and both negative and positive controls from the National Toxicology Program's immunotoxicology testing program. We examined the consistency between experienced toxicologic pathologists, who had varied expertise in immunohistopathology in identifying lesions in immune tissues, and in the sensitivity of the individual and combined histopathological endpoints to detect chemical effects and dose response. Factor analysis was used to estimate the association of each pathologist with a so-called "common factor" and analysis-of-variance methods were used to evaluate biases. Agreement between pathologists was highest in the thymus, in particular, when evaluating cortical cellularity of the thymus; good in spleen follicular cellularity and in spleen and lymph node-germinal center development; and poorest in spleen red-pulp changes. In addition, the ability to identify histopathological change in lymphoid tissues was dependent upon the experience/training that the individual pathologist possessed in examining lymphoid tissue and the apparent severity of the specific lesion.  (+info)

The Virtual Slide Set - a curriculum development system for digital microscopy. (45/105)

We describe the development of a Virtual Slide System for creating and viewing clinico-pathologic cases with embedded interactive digital microscopy. The system supports rich text-to-image annotation, including (1) hotlinks of text descriptions that move the student to the correct part of the slide, and (2) annotations such as arrows and circles that appear on the Virtual Slide on request. The interface can be configured by the student to alter the degree of guidance the system provides. The authoring layer provides a graphical user interface to authors for creating new case sets, cases, questions, and annotated virtual slides, which are saved to a database and automatically added to the Virtual Slide homepage. The system has been used in two pilot studies at the University of Pittsburgh.  (+info)

Audience response made easy: using personal digital assistants as a classroom polling tool. (46/105)

Both teachers and students benefit from an interactive classroom. The teacher receives valuable input about effectiveness, student interest, and comprehension, whereas student participation, active learning, and enjoyment of the class are enhanced. Cost and deployment have limited the use of existing audience response systems, allowing anonymous linking of teachers and students in the classroom. These limitations can be circumvented, however, by use of personal digital assistants (PDAs), which are cheaper and widely used by students. In this study, the authors equipped a summer histology class of 12 students with PDAs and wireless Bluetooth cards to allow access to a central server. Teachers displayed questions in multiple-choice format as a Web page on the server and students responded with their PDAs, a process referred to as polling. Responses were immediately compiled, analyzed, and displayed. End-of-class survey results indicated that students were enthusiastic about the polling tool. The surveys also provided technical feedback that will be valuable in streamlining future trials.  (+info)

ATLAS-plus: multimedia instruction in embryology, gross anatomy, and histology. (47/105)

ATLAS-plus [Advanced Tools for Learning Anatomical Structure] is a multimedia program used to assist in the teaching of anatomy at the University of Michigan Medical School. ATLAS-plus contains three courses: Histology, Embryology, and Gross Anatomy. In addition to the three courses, a glossary containing terms from the three courses is available. All three courses and the glossary are accessible in the ATLAS-plus environment. The ATLAS-plus environment provides a consistent set of tools and options so that the user can navigate easily and intelligently in and between the various courses and modules in the ATLAS-plus world. The program is a collaboration between anatomy and cell biology faculty, medical students, graphic artists, systems analysts, and instructional designers.  (+info)

PathPics: an image-based instructional program used in the pathology and histology curriculum and transmitted over a wide area network. (48/105)

PathPics is an image review and tutorial program developed at the University of California, San Diego (UCSD) School of Medicine as an adjunct to the preclinical Pathology and Histology curriculum. It incorporates faculty expertise and provides a framework for self-paced study of this visually-oriented material. The program is served over our wide area network and runs on color-capable Macintosh computers. PathPics was added to the curriculum in January, 1992, and has been enthusiastically received by the students.  (+info)