Overexpression of nucleoside diphosphate kinases induces neurite outgrowth and their substitution to inactive forms leads to suppression of nerve growth factor- and dibutyryl cyclic AMP-induced effects in PC12D cells. (9/5209)

Whether nucleoside diphosphate kinase (NDPK) is involved in neuronal differentiation was investigated with special reference to its enzyme activity. Neurite outgrowth of PC12D cells induced by nerve growth factor or a cyclic AMP analog was suppressed to some extent when inactive NDPKs (the active site histidine 118 was replaced with alanine), not active forms, were transiently overexpressed. This suppression was more definite in their stably expressed clones. NDPKbeta-transfected clones and, to a lesser extent, NDPKalpha-transfected clones, but not inactive NDPK-transfected clones, extended neurites without differentiation inducers. These results imply that NDPKs may play a role by exerting their enzyme activity during differentiation of PC12 cells.  (+info)

Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartic proteinases? (10/5209)

BACKGROUND: The aspartic proteinase renin catalyses the first and rate-limiting step in the conversion of angiotensinogen to the hormone angiotensin II, and therefore plays an important physiological role in the regulation of blood pressure. Numerous potent peptidomimetic inhibitors of this important drug target have been developed, but none of these compounds have progressed past clinical phase II trials. Limited oral bioavailability or excessive production costs have prevented these inhibitors from becoming new antihypertensive drugs. We were interested in developing new nonpeptidomimetic renin inhibitors. RESULTS: High-throughput screening of the Roche compound library identified a simple 3, 4-disubstituted piperidine lead compound. We determined the crystal structures of recombinant human renin complexed with two representatives of this new class. Binding of these substituted piperidine derivatives is accompanied by major induced-fit adaptations around the enzyme's active site. CONCLUSIONS: The efficient optimisation of the piperidine inhibitors was facilitated by structural analysis of the renin active site in two renin-inhibitor complexes (some of the piperidine derivatives have picomolar affinities for renin). These structural changes provide the basis for a novel paradigm for inhibition of monomeric aspartic proteinases.  (+info)

EPR characterization of axial bond in metal center of native and cobalt-substituted guanylate cyclase. (11/5209)

The nature of the metal-proximal base bond of soluble guanylate cyclase from bovine lung was examined by EPR spectroscopy. When the ferrous enzyme was mixed with NO, a new species was transiently produced and rapidly converted to a five-coordinate ferrous NO complex. The new species exhibited the EPR signal of six-coordinate ferrous NO complex with a feature of histidine-ligated heme. The histidine ligation was further examined by using the cobalt protoporphyrin IX-substituted enzyme. The Co2+-substituted enzyme exhibited EPR signals of a broad g perpendicular;1 component and a g;1 component with a poorly resolved triplet of 14N superhyperfine splittings, which was indicative of the histidine ligation. These EPR features were analogous to those of alpha-subunits of Co2+-hemoglobin in tense state, showing a tension on the iron-histidine bond of the enzyme. The binding of NO to the Co2+-enzyme markedly stimulated the cGMP production by forming the five-coordinate NO complex. We found that N3- elicited the activation of the ferric enzyme by yielding five-coordinate high spin N3- heme. These results indicated that the activation of the enzymes was initiated by NO binding to the metals and proceeded via breaking of the metal-histidine bonds, and suggested that the iron-histidine bond in the ferric enzyme heme was broken by N3- binding.  (+info)

Histidine-tagged wild-type yeast actin: its properties and use in an approach for obtaining yeast actin mutants. (12/5209)

Wild-type and an N-terminal 6-histidine-tagged actin have each been expressed by using a yeast strain that contains the actin gene on a plasmid and not on the chromosome. Yeast strains have also been constructed that use two plasmids, one expressing the wild-type protein and the other the 6-histidine-tagged protein. Yeast cells can be grown with either plasmid alone or with both plasmids together and appear to be normal in that the growth rates of all the yeast strains are quite similar, as is the morphology of the yeast cells. The polymerization properties of the 6-histidine-tagged actin appear almost identical to wild-type actin expressed from the chromosome. When the wild-type and 6-histidine-tagged actin are coexpressed, they can be purified by standard techniques and then separated using nickel-nitrilotriacetate chromatography. The method can be used to prepare actin mutants including those that are nonfunctional or might not support yeast growth for other reasons.  (+info)

Analysis of zinc binding sites in protein crystal structures. (13/5209)

The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.  (+info)

Active site characterization of the exo-N-acetyl-beta-D- glucosaminidase from thermotolerant Bacillus sp. NCIM 5120: involvement of tryptophan, histidine and carboxylate residues in catalytic activity. (14/5209)

The exo-N-acetyl-beta-d-glucosaminidase (EC 3.2.1.30) from thermotolerant Bacillus sp. NCIM 5120 is a homotetramer with a molecular mass of 240000 kDa. Chemical modification studies on the purified exo-N-acetyl-beta-d-glucosaminidase revealed the involvement of a single tryptophan, histidine and carboxylate, per monomer, in the catalytic activity of the enzyme. Spectral analysis and maintenance of total enzyme activities indicated that N-acetylglucosamine (competitive inhibitor) and p-nitrophenyl-N-acetyl-beta-d-glucosaminide (substrate) prevented the modification of a single essential tryptophan, histidine and carboxylate residue. Kinetic parameters of partially inactivated enzyme (by NBS/HNBB) showed the involvement of tryptophan in substrate binding while that of histidine (by photooxidation/DEPC) and carboxylate (by EDAC/WRK) in catalysis. The Bacillus sp. NCIM 5120 exo-N-acetyl-beta-d-glucosaminidase deviates from the reported N-acetyl-beta-d-glucosaminidases and beta-hexosaminidases that utilize anchimeric assistance in their hydrolytic mechanism.  (+info)

Immunological characterization of a protective antigen of Erysipelothrix rhusiopathiae: identification of the region responsible for protective immunity. (15/5209)

The gene encoding a protective protein antigen of the gram-positive bacterium Erysipelothrix rhusiopathiae, an important veterinary pathogen responsible for erysipelas in swine and a variety of diseases in animals, was cloned and sequenced. The gene encodes a polypeptide of 597 amino acids plus a putative signal sequence of 29 amino acids, resulting in a mature protein with a molecular mass of 69,017 Da. Sequence analysis of the gene product revealed a C-terminal region composed of nine tandem repeats of 20 amino acids and a total sequence that is nearly identical to that of the 64-kDa cell surface protein (SpaA) of the bacterium. Because of this similarity, the protein was designated SpaA.1. In this study, we examined whether the SpaA.1 protein could induce protective antibodies and whether we could identify the region involved in protective immunity. Both the mature SpaA.1 protein and its C-terminal repeat region, but not the N-terminal segment, were expressed in Escherichia coli and purified as a histidine-tagged fusion recombinant protein. Rabbit antiserum raised against the mature SpaA.1 protein passively protected mice from lethal challenge with a virulent homologous strain, Fujisawa-SmR, suggesting that protection is mediated by humoral antibodies. To determine which domain of the SpaA.1 protein is responsible for the observed protection, mice were actively immunized with either the mature SpaA. 1 protein or the C-terminal repeat region and then challenged with Fujisawa-SmR. The result showed that mice immunized with the mature SpaA.1 protein, but not the C-terminal repeat region, were protected, suggesting that the protection-eliciting epitope(s) is located within the N-terminal two-thirds of the SpaA.1 molecule. This was confirmed by passive immunization experiments in which the protective activity of rabbit antiserum, raised against mature SpaA. 1 protein, was not abolished by absorption with the purified recombinant C-terminal repeat region. In addition, antibodies specific for the C-terminal repeat region were unable to protect mice from lethal challenge. These results show that the N-terminal two-thirds of the SpaA.1 molecule may constitute a good vaccine candidate against erysipelas.  (+info)

An Arcanobacterium (Actinomyces) pyogenes mutant deficient in production of the pore-forming cytolysin pyolysin has reduced virulence. (16/5209)

Pyolysin (PLO), the hemolytic exotoxin expressed by Arcanobacterium (Actinomyces) pyogenes, is a member of the thiol-activated cytolysin family of bacterial toxins. Insertional inactivation of the plo gene results in loss of expression of PLO with a concomitant loss in hemolytic activity. The plo mutant, PLO-1, has an approximately 1. 8-log10 reduction in the 50% infectious dose compared to that for wild-type A. pyogenes in a mouse intraperitoneal infection model. Studies involving cochallenge of wild-type and PLO-1 bacteria resulted in recovery of similar numbers of both strains, suggesting that PLO production is required for survival in vivo. Recombinant, His-tagged PLO (His-PLO) is cytotoxic for mouse peritoneal macrophages and J774 cells in a dose-dependent manner. Protection against challenge with A. pyogenes could be afforded by vaccination with formalin-inactivated His-PLO, suggesting that PLO is a host-protective antigen, as well as a virulence determinant.  (+info)