Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. (41/14812)

Lesional and electrophysiological data implicate a role for the cerebral cortex in the initiation and modulation of human swallowing, and yet its functional neuroanatomy remains undefined. We therefore conducted a functional study of the cerebral loci processing human volitional swallowing with 15O-labeled water positron emission tomography (PET) activation imaging. Regional cerebral activation was investigated in 8 healthy right handed male volunteers with a randomized 12-scan paradigm of rest and water swallows (5 ml/bolus, continuous infusion) at increasing frequencies of 0.1, 0.2, and 0.3 Hz, which were visually cued and monitored with submental electromyogram (EMG). Group and individual linear covariate analyses were performed with SPM96. In five of eight subjects, the cortical motor representation of pharynx was subsequently mapped with transcranial magnetic stimulation (TMS) in a posthoc manner to substantiate findings of hemispheric differences in sensorimotor cortex activation seen with PET. During swallowing, group PET analysis identified increased regional cerebral blood flow (rCBF) (P < 0.001) within bilateral caudolateral sensorimotor cortex [Brodmann's area (BA) 3, 4, and 6], right anterior insula (BA 16), right orbitofrontal and temporopolar cortex (BA 11 and 38), left mesial premotor cortex (BA 6 and 24), left temporopolar cortex and amygdala (BA 38 and 34), left superiomedial cerebellum, and dorsal brain stem. Decreased rCBF (P < 0.001) was also observed within bilateral posterior parietal cortex (BA 7), right anterior occipital cortex (BA 19), left superior frontal cortex (BA 8), right prefrontal cortex (BA 9), and bilateral superiomedial temporal cortex (BA 41 and 42). Individual PET analysis revealed asymmetric representation within sensorimotor cortex in six of eight subjects, four lateralizing to right hemisphere and two to left hemisphere. TMS mapping in the five subjects identified condordant interhemisphere asymmetries in the motor representation for pharynx, consistent with the PET findings. We conclude that volitional swallowing recruits multiple cerebral regions, in particular sensorimotor cortex, insula, temporopolar cortex, cerebellum, and brain stem, the sensorimotor cortex displaying strong degrees of interhemispheric asymmetry, further substantiated with TMS. Such findings may help explain the variable nature of swallowing disorders after stroke and other focal lesions to the cerebral cortex.  (+info)

Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. (42/14812)

The central role of the hypothalamus in the origination and/or processing of feeding-related stimuli may be modulated by the activity of other functional areas of the brain including the insular cortex (involved in enteroceptive monitoring) and the prefrontal cortex (involved in the inhibition of inappropriate response tendencies). Regional cerebral blood flow (rCBF), a marker of neuronal activity, was measured in 11 healthy, normal-weight men by using positron emission tomography in a state of hunger (after 36-h fast) and a state of satiation (after a liquid meal). Hunger was associated with significantly increased rCBF in the vicinity of the hypothalamus and insular cortex and in additional paralimbic and limbic areas (orbitofrontal cortex, anterior cingulate cortex, and parahippocampal and hippocampal formation), thalamus, caudate, precuneus, putamen, and cerebellum. Satiation was associated with increased rCBF in the vicinity of the ventromedial prefrontal cortex, dorsolateral prefrontal cortex, and inferior parietal lobule. Changes in plasma insulin concentrations in response to the meal were negatively correlated with changes in rCBF in the insular and orbitofrontal cortex. Changes in plasma free fatty acid concentrations in response to the meal were negatively correlated with changes in rCBF in the anterior cingulate and positively correlated with changes in rCBF in the dorsolateral prefrontal cortex. In conclusion, these findings raise the possibility that several regions of the brain participate in the regulation of hunger and satiation and that insulin and free fatty acids may be metabolic modulators of postprandial brain neuronal events. Although exploratory, the present study provides a foundation for investigating the human brain regions and cognitive operations that respond to nutritional stimuli.  (+info)

Effect of radiotherapy on brain glucose metabolism in patients operated on for low grade astrocytoma. (43/14812)

OBJECTIVE: To assess the effect of postoperative radiotherapy on brain glucose metabolism (CMRGlu) of operated patients with low grade astrocytomas. METHODS: PET and 18F-fluorodeoxyglucose was used to measure absolute CMRGlu in patients with fibrillary astrocytoma (WHO II) of the frontal lobe, who did (n=7) or did not (n=12) receive radiotherapy subsequent to first debulking tumour resection. In addition, statistical parametric mapping (SPM95) was applied to assess the pattern of relative CMRGlu associated with the frontal tumour. Data were compared with 12 healthy controls. RESULTS: A global reduction of absolute CMRGlu was found when either patients with or without radiotherapy were compared with controls (ROI analysis). Brain areas of relative CMRGlu reduction were found in the brain ipsilateral and contralateral to the tumour, comparing both patient groups with controls by SPM ("tumour diaschisis effect"). Superimposed, absolute CMRGlu in the contralateral frontal, parietal, occipital cortex as well as in the white matter was on average 17% lower in patients receiving radiotherapy than in patients who did not. CONCLUSIONS: The data discriminate a tumour effect from a radiotherapy effect, and support the view of adverse effects of radiotherapy on brain not directly involved by tumour.  (+info)

Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. (44/14812)

Brain activity associated with voluntary muscle relaxation was examined by applying event-related functional magnetic resonance imaging (fMRI) technique, which enables us to observe change of fMRI signals associated with a single motor trial. The subject voluntarily relaxed or contracted the right upper limb muscles. Each motor mode had two conditions; one required joint movement, and the other did not. Five axial images covering the primary motor area (M1) and supplementary motor area (SMA) were obtained once every second, using an echoplanar 1.5 tesla MRI scanner. One session consisted of 60 dynamic scans (i.e., 60 sec). The subject performed a single motor trial (i.e., relaxation or contraction) during one session in his own time. Ten sessions were done for each task. During fMRI scanning, electromyogram (EMG) was monitored from the right forearm muscles to identify the motor onset. We calculated the correlation between the obtained fMRI signal and the expected hemodynamic response. The muscle relaxation showed transient signal increase time-locked to the EMG offset in the M1 contralateral to the movement and bilateral SMAs, where activation was observed also in the muscle contraction. Activated volume in both the rostral and caudal parts of SMA was significantly larger for the muscle relaxation than for the muscle contraction (p < 0.05). The results suggest that voluntary muscle relaxation occurs as a consequence of excitation of corticospinal projection neurons or intracortical inhibitory interneurons, or both, in the M1 and SMA, and both pre-SMA and SMA proper play an important role in motor inhibition.  (+info)

A map of pheromone receptor activation in the mammalian brain. (45/14812)

In mammals, the detection of pheromones is mediated by the vomeronasal system. We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb. Neurons expressing a specific receptor project to multiple glomeruli that reside within spatially restricted domains. The formation of this sensory map in the accessory olfactory bulb and the survival of vomeronasal organ sensory neurons require the expression of pheromone receptors. In addition, we observe individual glomeruli in the accessory olfactory bulb that receive input from more than one type of sensory neuron. These observations indicate that the organization of the vomeronasal sensory afferents is dramatically different from that of the main olfactory system, and these differences have important implications for the logic of olfactory coding in the vomeronasal organ.  (+info)

Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. (46/14812)

Visual cortical lesions destroy the target cells for geniculocortical fibers from a certain retinotopic region. This leads to a cortical scotoma. We have investigated the receptive fields of cells in the visual cortex before, 2 days and 2 months after focal ibotenic acid lesions in the adult cat visual cortex and have found signs of receptive field plasticity in the surroundings of the chronic but not the acute and subacute excitotoxic lesions. In the subacute state (first two days post lesion) receptive field sizes of cells at the border of the lesion were reduced in size or remained unchanged. Remapping of cortical receptive fields 2 months later revealed a number of cells with multifold enlarged receptive fields at the border of the lesion. The cells with enlarged receptive fields displayed orientation and direction selectivity like normal cells. The size increase appeared not specifically directed towards the scotoma; however, the enlarged receptive fields can reduce the extent of a cortical scotoma, since previously unresponsive regions of the visual field activate cortical cells at the border of the lesion. This late receptive field plasticity could serve as a mechanism for the filling-in of cortical scotomata observed in patients with visual cortex lesions.  (+info)

Determination of cognitive hemispheric lateralization by "functional" transcranial Doppler cross-validated by functional MRI. (47/14812)

BACKGROUND AND PURPOSE: Changes of blood flow velocity in the right and left middle cerebral artery (MCA) induced by cognitive demands are detectable by means of "functional" transcranial Doppler sonography (fTCD). Functional MRI (fMRI) is an alternative method for mapping brain activity. The purpose of this study was to determine whether fTCD can detect hemispheric lateralization and to cross-validate fTCD with fMRI. METHODS: Bilateral continuous MCA monitoring of 14 healthy, right-handed subjects with TCD was performed while the subjects underwent a visuospatial task, and the hemispheric blood flow velocity shift was calculated. Identical stimulus and response patterns were used in fMRI. Blood oxygenation level-dependent fMRI was performed with the use of a gradient-echo echo-planar sequence on a 1.5-T scanner. Statistical maps were computed on a voxel-by-voxel basis, hemispheric ratios for activated pixels were computed, and a group study was performed separately for the male and female subgroups. RESULTS: Statistical analyses (t test) showed a significantly higher mean peak blood flow velocity increase (P<0.05) of the right MCA (111.3+/-7.0%) compared with the left MCA (107.1+/-6.1%). fMRI demonstrated bilateral activation in the superior parietal lobulus (Brodmann area 7) with a right/left ratio of 1.95. Concordant differences between the female and male subgroups could be visualized with both methods. CONCLUSIONS: Both methods succeeded in discriminating a blood flow shift to the right hemisphere induced by a complex cognitive visuospatial task. fMRI cross-validates the findings of fTCD. Our study suggests that fTCD can investigate the close relationship between brain activity and blood flow and lateralize higher cognitive functions reliably.  (+info)

Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. (48/14812)

The Eph family is thought to exert its function through the complementary expression of receptors and ligands. Here, we show that EphA receptors colocalize on retinal ganglion cell (RGC) axons with EphA ligands, which are expressed in a high-nasal-to-low-temporal pattern. In the stripe assay, only temporal axons are normally sensitive for repellent axon guidance cues of the caudal tectum. However, overexpression of ephrinA ligands on temporal axons abolishes this sensitivity, whereas treatment with PI-PLC both removes ephrinA ligands from retinal axons and induces a striped outgrowth of formerly insensitive nasal axons. In vivo, retinal overexpression of ephrinA2 leads to topographic targeting errors of temporal axons. These data suggest that differential ligand expression on retinal axons is a major determinant of topographic targeting in the retinotectal projection.  (+info)