Mental change as an early feature of multiple sclerosis. (49/63334)

Five patients with mental change as a prominent and early feature of an illness which appeared to be multiple sclerosis are reported. All the patients had in addition clinical signs of predominant brain stem involvement and the cerebrospinal fluid findings were similar. It is emphasised that mental change may be an early feature of multiple sclerosis even in those patients in whom the onset of the disease is insidious.  (+info)

Computerised axial tomography in patients with severe migraine: a preliminary report. (50/63334)

Patients suffering from severe migraine, usually for many years, have been examined by the EMI scanner between attacks. Judged by criteria validated originally by comparison with pneumoencephalography, about half of the patients showed evidence of cerebral atrophy. Perhaps of more significance than generalised atrophy was the frequency of areas of focal atrophy and of evidence of infarction.  (+info)

Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. (51/63334)

The 5-HT1A and 5-HT1B serotonin receptors are expressed in a variety of neurons in the central nervous system. While the 5-HT1A receptor is found on somas and dendrites, the 5-HT1B receptor has been suggested to be localized predominantly on axon terminals. To study the intracellular addressing of these receptors, we have used in vitro systems including Madin-Darby canine kidney (MDCK II) epithelial cells and primary neuronal cultures. Furthermore, we have extended these studies to examine addressing in vivo in transgenic mice. In epithelial cells, 5-HT1A receptors are found on both apical and basolateral membranes while 5-HT1B receptors are found exclusively in intracellular vesicles. In hippocampal neuronal cultures, 5-HT1A receptors are expressed on somatodendritic membranes but are absent from axons. In contrast, 5-HT1B receptors are found on both dendritic and axonal membranes, including growth cones where they accumulate. Using 5-HT1A and 5-HT1B knockout mice and the binary tTA/tetO system, we generated mice expressing these receptors in striatal neurons. These in vivo experiments demonstrate that, in striatal medium spiny neurons, the 5-HT1A receptor is restricted to the somatodendritic level, while 5-HT1B receptors are shipped exclusively toward axon terminals. Therefore, in all systems we have examined, there is a differential sorting of the 5-HT1A and 5-HT1B receptors. Furthermore, we conclude that our in vivo transgenic system is the only model that reconstitutes proper sorting of these receptors.  (+info)

N-type voltage-dependent calcium channels mediate the nicotinic enhancement of GABA release in chick brain. (52/63334)

The role of voltage-dependent calcium channels (VDCCs) in the nicotinic acetylcholine receptor (nAChR)-mediated enhancement of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) was investigated in chick brain slices. Whole cell recordings of neurons in the lateral spiriform (SpL) and ventral lateral geniculate (LGNv) nuclei showed that cadmium chloride (CdCl2) blocked the carbachol-induced increase of spontaneous GABAergic IPSCs, indicating that VDCCs might be involved. To conclusively show a role for VDCCs, the presynaptic effect of carbachol on SpL and LGNv neurons was examined in the presence of selective blockers of VDCC subtypes. omega-Conotoxin GVIA, a selective antagonist of N-type channels, significantly reduced the nAChR-mediated enhancement of gamma-aminobutyric acid (GABA) release in the SpL by 78% compared with control responses. Nifedipine, an L-type channel blocker, and omega-Agatoxin-TK, a P/Q-type channel blocker, did not inhibit the enhancement of GABAergic IPSCs. In the LGNv, omega-Conotoxin GVIA also significantly reduced the nAChR-mediated enhancement of GABA release by 71% from control values. Although omega-Agatoxin-TK did not block the nicotinic enhancement, L-type channel blockers showed complex effects on the nAChR-mediated enhancement. These results indicate that the nAChR-mediated enhancement of spontaneous GABAergic IPSCs requires activation of N-type channels in both the SpL and LGNv.  (+info)

Characterization of K+ currents underlying pacemaker potentials of fish gonadotropin-releasing hormone cells. (53/63334)

Endogenous pacemaker activities are important for the putative neuromodulator functions of the gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve (TN) cells. We analyzed several types of voltage-dependent K+ currents to investigate the ionic mechanisms underlying the repolarizing phase of pacemaker potentials of TN-GnRH cells by using the whole brain in vitro preparation of fish (dwarf gourami, Colisa lalia). TN-GnRH cells have at least four types of voltage-dependent K+ currents: 1) 4-aminopyridine (4AP)-sensitive K+ current, 2) tetraethylammonium (TEA)-sensitive K+ current, and 3) and 4) two types of TEA- and 4AP-resistant K+ currents. A transient, low-threshold K+ current, which was 4AP sensitive and showed significant steady-state inactivation in the physiological membrane potential range (-40 to -60 mV), was evoked from a holding potential of -100 mV. This current thus cannot contribute to the repolarizing phase of pacemaker potentials. TEA-sensitive K+ current evoked from a holding potential of -100 mV was slowly activating, long lasting, and showed comparatively low threshold of activation. This current was only partially inactivated at steady state of -60 to -40 mV, which is equivalent to the resting membrane potential. TEA- and 4AP-resistant sustained K+ currents were evoked from a holding potential of -100 mV and were suggested to consist of two types, based on the analysis of activation curves. From the inactivation and activation curves, it was suggested that one of them with low threshold of activation may be partly involved in the repolarizing phase of pacemaker potentials. Bath application of TEA together with tetrodotoxin reversibly blocked the pacemaker potentials in current-clamp recordings. We conclude that the TEA-sensitive K+ current is the most likely candidate that contributes to the repolarizing phase of the pacemaker potentials of TN-GnRH cells.  (+info)

Bound forms of Ca taken up by the synaptic plasma membrane. (54/63334)

Temperature dependent Ca-binding by the synaptic plasma membrane was increased in the presence of ATP and Mg++. Apparent Km for ATP was about 2.8 X 10(-5) M and optimal concentration of Mg++ was 2 mM in the presence of 2 mM ATP. After preincubation with nonradioactive Ca++, ATP and Mg++ to attain a steady state, addition of 45Ca resulted in remarkable labelling of the membrane, indicating rapid turnover of most of the membrane bound Ca. The presence of oxalate (60 mM) greatly increased Ca up-take on prolonged incubation. The Ca uptake in presence and absence of oxalate had similar substrate specificity and was similarly influenced by various monovalent cations. Furthermore, activities for Ca-uptake in the presence and absence of oxalate could not be separated by sucrose density gradient centrifugation of the synaptic plasma membrane fraction. Accordingly, it was considered that Ca++ in the medium was taken up by surface of the membrane, ATP- and temperature-dependently and then transferred into a cavity where the Ca-oxalate complex is formed.  (+info)

Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. (55/63334)

The mRNA expression of the tumor-associated antigens MAGE and GAGE was examined in 60 high-grade brain tumors. This analysis was performed by using reverse transcription-PCR, Southern blotting, and sequencing. It was demonstrated that, of the eight GAGE genes, GAGE-2 and -7 were expressed in five of seven normal brains. Four groups of tumors--adult glioblastoma multiforme (n = 20), pediatric glioblastoma multiforme (n = 9), medulloblastomas (n = 15), and ependymomas (n = 14)--were analyzed for mRNA expression. The following frequencies were observed: MAGE-1, 0, 0, 13, and 0%, respectively; MAGE-2, 5, 11, 60, and 57%; MAGE-3 & -6, 0, 0, 13, and 0%; GAGE-1, 65, 11, 13, and 43%; and GAGE-3-6 and -8: 75, 78, 47, and 93%, respectively. Two unclassified tumors expressed GAGE-3-6 and -8 only. The absence of GAGE-1 expression in normal brain, its relatively high frequency of expression in high-grade brain tumors, and its unique 3' sequence, suggest it may represent a useful target for specific immunotherapy. The detection method of reverse transcription-PCR and Southern blotting may also be useful for rapid screening of biopsy specimens both for diagnostic purposes and to determine a patient's eligibility for specific immunotherapy.  (+info)

Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. (56/63334)

Transgenic mice overexpressing different forms of amyloid precursor protein (APP), i.e. wild type or clinical mutants, displayed an essentially comparable early phenotype in terms of behavior, differential glutamatergic responses, deficits in maintenance of long term potentiation, and premature death. The cognitive impairment, demonstrated in F1 hybrids of the different APP transgenic lines, was significantly different from nontransgenic littermates as early as 3 months of age. Biochemical analysis of secreted and membrane-bound APP, C-terminal "stubs," and Abeta(40) and Abeta(42) peptides in brain indicated that no single intermediate can be responsible for the complex of phenotypic dysfunctions. As expected, the Abeta(42) levels were most prominent in APP/London transgenic mice and correlated directly with the formation of amyloid plaques in older mice of this line. Plaques were associated with immunoreactivity for hyperphosphorylated tau, eventually signaling some form of tau pathology. In conclusion, the different APP transgenic mouse lines studied display cognitive deficits and phenotypic traits early in life that dissociated in time from the formation of amyloid plaques and will be good models for both early and late neuropathological and clinical aspects of Alzheimer's disease.  (+info)