Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts. (1/10346)

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. (2/10346)

The Drosophila kismet gene was identified in a screen for dominant suppressors of Polycomb, a repressor of homeotic genes. Here we show that kismet mutations suppress the Polycomb mutant phenotype by blocking the ectopic transcription of homeotic genes. Loss of zygotic kismet function causes homeotic transformations similar to those associated with loss-of-function mutations in the homeotic genes Sex combs reduced and Abdominal-B. kismet is also required for proper larval body segmentation. Loss of maternal kismet function causes segmentation defects similar to those caused by mutations in the pair-rule gene even-skipped. The kismet gene encodes several large nuclear proteins that are ubiquitously expressed along the anterior-posterior axis. The Kismet proteins contain a domain conserved in the trithorax group protein Brahma and related chromatin-remodeling factors, providing further evidence that alterations in chromatin structure are required to maintain the spatially restricted patterns of homeotic gene transcription.  (+info)

Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. (3/10346)

We have identified a novel gene in a gene trap screen that encodes a protein related to the DnaJ co-chaperone in E. coli. The gene, named Mrj (mammalian relative of DnaJ) was expressed throughout development in both the embryo and placenta. Within the placenta, expression was particularly high in trophoblast giant cells but moderate levels were also observed in trophoblast cells of the chorion at embryonic day 8.5, and later in the labyrinth which arises from the attachment of the chorion to the allantois (a process called chorioallantoic fusion). Insertion of the ROSAbetageo gene trap vector into the Mrj gene created a null allele. Homozygous Mrj mutants died at mid-gestation due to a failure of chorioallantoic fusion at embryonic day 8.5, which precluded formation of the mature placenta. At embryonic day 8.5, the chorion in mutants was morphologically normal and expressed the cell adhesion molecule beta4 integrin that is known to be required for chorioallantoic fusion. However, expression of the chorionic trophoblast-specific transcription factor genes Err2 and Gcm1 was significantly reduced. The mutants showed no abnormal phenotypes in other trophoblast cell types or in the embryo proper. This study indicates a previously unsuspected role for chaperone proteins in placental development and represents the first genetic analysis of DnaJ-related protein function in higher eukaryotes. Based on a survey of EST databases representing different mouse tissues and embryonic stages, there are 40 or more DnaJ-related genes in mammals. In addition to Mrj, at least two of these genes are also expressed in the developing mouse placenta. The specificity of the developmental defect in Mrj mutants suggests that each of these genes may have unique tissue and cellular activities.  (+info)

Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. (4/10346)

The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.  (+info)

Factor VII deficiency rescues the intrauterine lethality in mice associated with a tissue factor pathway inhibitor deficit. (5/10346)

Mice doubly heterozygous for a modified tissue factor pathway inhibitor (TFPI) allele (tfpi delta) lacking its Kunitz-type domain-1 (TFPI+/delta) and for a deficiency of the factor VII gene (FVII+/-) were mated to generate 309 postnatal and 205 embryonic day 17.5 (E17. 5) offspring having all the predicted genotypic combinations. Progeny singly homozygous for the tfpidelta modification but with the wild-type fVII allele (FVII+/+/TFPIdelta/delta), and mice singly homozygous for the fVII deficiency and possessing the wild-type tfpi allele (FVII-/-/TFPI+/+), displayed previously detailed phenotypes (i.e., a high percentage of early embryonic lethality at E9.5 or normal development with severe perinatal bleeding, respectively). Surprisingly, mice of the combined FVII-/-/TFPIdelta/delta genotype were born at the expected mendelian frequency but suffered the fatal perinatal bleeding associated with the FVII-/- genotype. Mice carrying the FVII+/-/TFPIdelta/delta genotype were also rescued from the lethality associated with the FVII+/+/TFPIdelta/delta genotype but succumbed to perinatal consumptive coagulopathy. Thus, the rescue of TFPIdelta/delta embryos, either by an accompanying homozygous or heterozygous FVII deficiency, suggests that diminishment of FVII activity precludes the need for TFPI-mediated inhibition of the FVIIa/tissue factor coagulation pathway during embryogenesis. Furthermore, the phenotypes of these combined deficiency states suggest that embryonic FVII is produced in mice as early as E9.5 and that any level of maternal FVII in early-stage embryos is insufficient to cause a coagulopathy in TFPIdelta/delta mice.  (+info)

Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. (6/10346)

The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  (+info)

Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. (7/10346)

Krox-24 (NGFI-A, Egr-1) is an immediate-early gene encoding a zinc finger transcription factor. As Krox-24 is expressed in brain areas showing post-natal neurogenesis during a thyroid hormone (T3)-sensitive period, we followed T3 effects on Krox-24 expression in newborn mice. We analysed whether regulation was associated with changes in mitotic activity in the subventricular zone and the cerebellum. In vivo T3-dependent Krox-24 transcription was studied by polyethylenimine-based gene transfer. T3 increased transcription from the Krox-24 promoter in both areas studied at post-natal day 2, but was without effect at day 6. An intact thyroid hormone response element (TRE) in the Krox-24 promoter was necessary for these inductions. These stage-dependent effects were also seen in endogenous Krox-24 mRNA levels: activation at day 2 and no effect at day 6. Moreover, similar results were obtained by examining beta-galactosidase expression in heterozygous mice in which one allele of the Krox-24 gene was disrupted with an inframe Lac-Z insertion. However, bromodeoxyuridine incorporation showed mitosis to continue through to day 6. We conclude first, that T3 activates Krox-24 transcription during early post-natal mitosis but that this effect is extinguished as development proceeds and second, loss of T3-dependent Krox-24 expression is not correlated with loss of mitotic activity.  (+info)

Angiotensinogen gene polymorphisms M235T/T174M: no excess transmission to hypertensive Chinese. (8/10346)

The gene encoding angiotensinogen (AGT) has been widely studied as a candidate gene for hypertension. Most studies to date have relied on case-control analysis to test for an excess of AGT variants among hypertensive cases compared with normotensive controls. However, with this design, nothing guarantees that a positive finding is due to actual allelic association as opposed to an inappropriate control population. To avoid this difficulty in our study of essential hypertension in Anqing, China, we tested AGT variants using the transmission/disequilibrium test, a procedure that bypasses the need for a control sample by testing for excessive transmission of a genetic variant from parents heterozygous for that variant. We analyzed two AGT polymorphisms, M235T and T174M, which have been associated with essential hypertension in whites and Japanese, using data on 335 hypertensive subjects from 315 nuclear families and their parents. Except in the group of subjects younger than 25 years, M235 and T174 were the more frequently transmitted alleles. We found that 194 parents heterozygous for M235T transmitted M235 106 times (P=0.22) and that 102 parents heterozygous for T174M transmitted T174 60 times (P=0.09). Stratifying offspring by gender, M235 and T174 were transmitted 60 of 106 times (P=0.21) and 44 of 75 times (P=0.17), respectively, in men, and 46 of 88 times (P=0.75) and 16 of 27 times (P=0.44), respectively, in women. Our results were also negative in all age groups and for the affected offspring with blood pressure values >/=160/95 mm Hg. Thus, this study provides no evidence that either allele of M235T or T174M contributes to hypertension in this Chinese population.  (+info)