Differential inhibition of RNA editing in hepatitis delta virus genotype III by the short and long forms of hepatitis delta antigen. (25/171)

Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3' of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.  (+info)

Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. (26/171)

Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination. When recombination occurs, such as in population data, no unique tree topology can describe the evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We examine three tests based on different models of variable selective pressures among sites. Sequences are simulated using a coalescent model with recombination and analyzed using codon-based likelihood models ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than three recombination events in the history of a sample of 10 sequences). However, at higher levels of recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that compares the more realistic models M7 (beta) against M8 (beta and omega) is more robust to recombination, where the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account for positive selection), and the alternative model M8 allows an additional discrete class with omega = d(N)/d(S) that could be estimated to be >1 (and thus accounts for positive selection). Identification of sites under positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.  (+info)

Denying the wolf access to sheep's clothing. (27/171)

Hepatitis delta virus (HDV) is a cause of acute and chronic liver disease for which no effective therapy is currently available. Previous research has demonstrated that prenylation of the large HDV antigen is essential for viral assembly. A new report describes a novel small animal model for HDV replication and demonstrates that prenylation inhibitors are highly effective at clearing viremia and thus have potential relevance for the treatment of chronic delta hepatitis.  (+info)

Determination of the multimerization state of the hepatitis delta virus antigens in vivo. (28/171)

Hepatitis delta virus expresses two essential proteins, the small and large delta antigens, and both are required for viral propagation. Proper function of each protein depends on the presence of a common amino-terminal multimerization domain. A crystal structure, solved using a peptide fragment that contained residues 12 to 60, depicts the formation of an octameric ring composed of antiparallel coiled-coil dimers. Because this crystal structure was solved for only a fragment of the delta antigens, it is unknown whether octamers actually form in vivo at physiological protein concentrations and in the context of either intact delta antigen. To test the relevance of the octameric structure, we developed a new method to probe coiled-coil structures in vivo. We generated a panel of mutants containing cysteine substitutions at strategic locations within the predicted monomer-monomer interface and the dimer-dimer interface. Since the small delta antigen contains no cysteine residues, treatment of cell extracts with a mild oxidizing reagent was expected to induce disulfide bond formation only when the appropriate pairs of cysteine substitution mutants were coexpressed. We indeed found that, in vivo, both the small and large delta antigens assembled as antiparallel coiled-coil dimers. Likewise, we found that both proteins could assume an octameric quaternary structure in vivo. Finally, during the course of these experiments, we found that unprenylated large delta antigen molecules could be disulfide cross-linked via the sole cysteine residue located within the carboxy terminus. Therefore, in vivo, the C terminus likely provides an additional site of protein-protein interaction for the large delta antigen.  (+info)

Incidence of hepatitis D virus infection in Japanese patients with hepatocellular carcinoma--immunohistochemical investigation of the delta antigen. (29/171)

In order to clarify the incidence of the delta agent among hepatocellular carcinomas (HCCs) in Kurume, where the hepatitis B infection and its related HCC are most prevalent in Japan, liver tissues from sero hepatitis B surface antigen-positive autopsy cases, with or without HCC, were immunohistochemically investigated for detection of the delta antigen. Only one patient (1.7%) among 58 patients with HCC was found to have delta-antigen in the nuclei in the hepatocytes, which were diffusely distributed throughout the non-cancerous liver. None of 26 patients with liver cirrhosis showed delta-antigen in the liver tissue. The incidence is so low that the delta agent is unlikely to have a role in the development of HCC in our areas.  (+info)

Hepatitis D virus infection in liver tissues of patients with hepatitis B in China. (30/171)

2,346 liver samples from 17 cities of China for intrahepatic hepatitis D antigen (HDAg) were studied by direct enzyme-labelled technique. HDAg was detected in 167 out of 1,764 samples of HBsAg positive individuals making a detection rate of 9.47%. Hepatitis D virus (HDV) infection existed in all the examined districts with no significant difference in the HDAg detection rate. It was found that the intrahepatic HDAg detection rate was related to the pathologic type of the liver disease. The HDAg detection rate in chronic liver diseases and severe hepatitis was higher than in other liver diseases. It suggests that HDV infection is associated with the progression and chronicity of the liver disease. Studies on the relationship between HDV infection and HBV replication showed that HBV replication might be suppressed by HDV infection. Both HDV and HBV, however, could replicate in the same hepatocyte simultaneously.  (+info)

Oligomerization of hepatitis delta antigen is required for both the trans-activating and trans-dominant inhibitory activities of the delta antigen. (31/171)

Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.  (+info)

Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II. (32/171)

When RNA polymerase II (RNAP II) is forced to stall, elongation complexes (ECs) are observed to leave the active pathway and enter a paused state. Initially, ECs equilibrate between active and paused conformations, but with stalls of a long duration, ECs backtrack and become sensitive to transcript cleavage, which is stimulated by the EC rescue factor stimulatory factor II (TFIIS/SII). In this work, the rates for equilibration between the active and pausing pathways were estimated in the absence of an elongation factor, in the presence of hepatitis delta antigen (HDAg), and in the presence of transcription factor IIF (TFIIF), with or without addition of SII. Rates of equilibration between the active and paused states are not very different in the presence or absence of elongation factors HDAg and TFIIF. SII facilitates escape from stalled ECs by stimulating RNAP II backtracking and transcript cleavage and by increasing rates into and out of the paused EC. TFIIF and SII cooperate to merge the pausing and active pathways, a combinatorial effect not observed with HDAg and SII. In the presence of HDAg and SII, pausing is observed without stimulation of transcript cleavage, indicating that the EC can pause without backtracking beyond the pre-translocated state.  (+info)