Human long-term culture initiating cells are sensitive to benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and protected after mutant (G156A) methylguanine methyltransferase gene transfer. (41/3529)

Human hematopoietic progenitors express low levels of O6-alkylguanine-DNA alkyltransferase and are sensitive to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), particularly following O6-benzylguanine (BG)-mediated O6-alkylguanine-DNA alkyltransferase inhibition. Expression of the BG-resistant mutant (G156A) methylguanine methyltransferase (deltaMGMT) gene in hematopoietic cells confers resistance to BG and BCNU. Because BCNU targets both early and late human hematopoietic cells and results in prolonged and cumulative myelosuppression, we attempted to protect early hematopoietic progenitors (long-term culture initiating cells (LTC-ICs)) by retroviral-mediated transfer of the deltaMGMTgene. A total of 33-56% of LTC-ICs were transduced with MFG-deltaMGMT retrovirus as determined by evidence of provirus in secondary colony-forming units at 5 weeks of culture under conditions optimal for the survival and proliferation of early hematopoietic progenitors. The addition of flt-3 ligand to cultures increased the transduction rate of LTC-ICs. Furthermore, 17.8 +/- 8.1% of deltaMGMT-transduced LTC-ICs survived doses of BG and BCNU; these doses allowed the survival of only 0-1% of untransduced LTC-ICs. This finding compares favorably with the 8-12% of CD34+ cell-derived colony-forming units that we previously showed became resistant to BG and BCNU after deltaMGMTgene transfer. Thus, deltaMGMT transduction of human early hematopoietic progenitor LTC-ICs confers resistance to BG and BCNU and may allow transduced LTC-ICs selective survival and enrichment over untransduced cells in patients undergoing BG and BCNU chemotherapy.  (+info)

Transcription elongation factor hSPT5 stimulates mRNA capping. (42/3529)

RNA polymerase II nascent transcripts are capped during pausing before elongation. Here we report that hSPT5, the human homolog of yeast elongation factor SPT5, interacts directly with the capping enzyme. hSPT5 stimulated capping enzyme guanylylation and mRNA capping by severalfold. Although RNA 5'-triphosphatase activity was unaffected, binding to this domain in the full-length enzyme is likely involved in the stimulation, as hSPT5 did not increase the activity of the guanylyltransferase fragment. Consistent with capping enzyme binding, TFIIH-phosphorylated CTD stimulated guanylylation, and this increase was not additive with hSPT5.  (+info)

Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in rat lungs after intratracheal administration of diesel exhaust particles. (43/3529)

Diesel exhaust particles (DEP), an environmental pollutant, are known to induce lung cancer in experimental animals. To clarify whether reactive oxygen species (ROS) are involved in its carcinogenic mechanism, we examined the levels of 8-hydroxyguanine (8-OH-Gua), its total repair and the repair enzyme OGG1 mRNA in female Fischer 344 rat lungs, as markers of the response to ROS, after DEP was intratracheally instilled. The 8-OH-Gua levels in both DEP-treated groups (2 and 4 mg) were increased during the 2-8 h following exposure to DEP. The 8-OH-Gua repair activities in the DEP-treated groups decreased during the period from 2 h to 2 days following DEP exposure and then recovered to the level of the control group at 5 days after exposure. OGG1 mRNA was induced in rats treated with 4 mg DEP for 5-7 days after administration. In conclusion, the 8-OH-Gua level in rat lung DNA increases markedly at an early phase after DEP exposure, by the generation of ROS and the inhibition of 8-OH-Gua repair activity, and induction of OGG1 mRNA is also a good marker of cellular oxidative stress during carcinogenesis.  (+info)

Bystander effect of purine nucleoside analogues in HSV-1 tk suicide gene therapy is superior to that of pyrimidine nucleoside analogues. (44/3529)

Introduction of the herpes simplex virus type 1 thymidine kinase gene into tumor cells, followed by the administration of the antiherpes nucleoside analogue ganciclovir has been demonstrated to be effective in eliminating solid tumors in animals. The success of this combination treatment largely depends on the bystander effect, i.e. the killing of nontransfected tumor cells by activated drug carried over from the nearby herpes thymidine kinase (tk) gene-transfected cells. We evaluated the in vitro bystander effect of several antiherpes purine and pyrimidine nucleoside analogues, using a colorimetric assay. All pyrimidine nucleoside analogues, including (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), showed low, if any, bystander killing effect. In contrast, purine nucleoside analogues, such as ganciclovir, were endowed with a pronounced bystander killer effect. Lobucavir (Cyclobut-G), a ganciclovir analogue, displayed a two- to three-fold more pronounced bystander killer effect than ganciclovir, eliminating, at a concentration of 10 microM, 75% and 90% of a cell population that contained 5% and 10% tk gene-transfected cells, respectively. These findings were corroborated by autoradiographic analysis that showed that 2'-3H-BVDU metabolites formed in the herpes tk gene-transfected tumor cells were much less efficiently incorporated in the DNA of bystander cells than 8-3H-GCV. This indicates that, under the same experimental conditions, BVDU metabolites are less prone to pass the gap junctions than GCV metabolites.  (+info)

Moloney murine sarcoma virus genomic RNAs dimerize via a two-step process: a concentration-dependent kissing-loop interaction is driven by initial contact between consecutive guanines. (45/3529)

Retroviruses contain two plus-strand genomic RNAs, which are stably but noncovalently joined in their 5' regions by a dimer linkage structure (DLS). Two models have been put forward to explain the mechanisms by which the RNAs dimerize; each model emphasizes the role of specific molecular determinants. The kissing-loop model implicates interactions between palindromic sequences in the DLS region. The second model proposes that purine-rich stretches in the region form purine quartet structures. Here, we present an examination of the in vitro dimerization of Moloney murine sarcoma virus (MuSV) RNA in the context of these two models. Dimers were found to form spontaneously in a temperature-, time-, concentration-, and salt-dependent manner. In contrast to earlier reports, we found that deletion of neither the palindrome nor the consensus purine motifs (PuGGAPuA) affected the level of dimer formation at low concentrations of RNA. Rather, different purine-rich sequences, i.e., consecutive stretches of guanines, were found to enhance both in vitro RNA dimerization and in vivo viral replication. Biochemical evidence further suggests that these guanine-rich (G-rich) stretches form guanine quartet structures. We also found that the palindromic sequences could support dimerization at significantly higher RNA concentrations. In addition, the G-rich stretches were as important as the palindromic sequence for maintaining efficient viral replication. Overall, our data support a model that entails contributions from both of the previously proposed mechanisms of retroviral RNA dimerization.  (+info)

Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. (46/3529)

The proliferation rate of HT29 colon carcinoma cells was decreased by the multitargeted antifolate (MTA), LY231514. This effect correlated with a buildup of cells near the G1-S interface after 24 h of incubation, and a synchronized progression of the population through S phase during the next 24 h. MTA treatment (0.03-3 microM) was minimally cytotoxic (20-30%) to HT29 cells after a 24-h exposure, and no dose response was observed. In contrast, the nucleoside analogue gemcitabine (GEM) was cytotoxic (IC50, 0.071 +/- 0.011 microM; IC90, 0.648 +/- 0.229 microM) after a 24-h exposure. We hypothesized that pretreatment of these cells with MTA would increase the potency of GEM by synchronizing the population for DNA synthesis. The cytotoxicity of GEM increased 2-7-fold when MTA was administered 24 h before GEM (IC50, 0.032 +/- 0.009 microM; IC90, 0.094 +/- 0.019 microM). In addition, an increase in cell kill for the combination compared with GEM alone (IC99, 12 microM for GEM alone; IC99, 0.331 microM for combination) was observed. No increase in potency or cell kill was observed when the two compounds were added simultaneously. MTA pretreatment also potentiated the cytotoxicity of a 1-h exposure to GEM. These cell-based observations were extended to evaluate the schedule-dependent interaction of these two agents in vivo using a nude mouse HT29 xenograft tumor model. At the doses tested, MTA alone (100 mg/kg) had a marginal effect on tumor growth delay, whereas GEM (80 mg/kg) produced a statistically significant tumor growth delay. In combination, the increase in tumor growth delay was greatest when MTA was administered before GEM, compared with simultaneous drug administration or the reverse sequence, e.g., GEM followed by MTA. The effect of sequential administration of MTA followed by GEM was greater than additive, indicating synergistic interaction of these agents. Thus, in vitro, MTA induced cell cycle effects on HT29 cells that resulted in potentiation of the cytotoxicity of GEM. In vivo, combination of these two drugs also demonstrated a schedule-dependent synergy that was optimal when MTA treatment preceded GEM.  (+info)

Retroviral-mediated expression of the P140A, but not P140A/G156A, mutant form of O6-methylguanine DNA methyltransferase protects hematopoietic cells against O6-benzylguanine sensitization to chloroethylnitrosourea treatment. (47/3529)

O(6)-Benzylguanine (6-BG) inactivates mammalian O(6)-methylguanine DNA methyltransferase (MGMT), an important DNA repair protein that protects cells against chloroethylnitrosourea (CENU) cytotoxicity. 6-BG is being tested as an approach to treat CENU-resistant tumors that overexpress endogenous MGMT. However, in addition to restoring CENU tumor cell sensitivity, 6-BG also increases the cytotoxic effects of CENUs on hematopoietic cells. Several 6-BG-resistant human MGMT mutants have been characterized in Escherichia coli and are predicted to protect mammalian cells against the combination of 6-BG and CENU treatment in vivo. Two mutants, P140A and P140A/G156A, demonstrated 20- and 1200-fold more resistance to 6-BG depletion of MGMT activity compared with wild-type MGMT (WTMGMT). Here, we analyzed retroviral vectors that express either WTMGMT, the P140A or P140A/G156A mutant forms of MGMT. Retroviral-infected L1210 hematopoietic cells demonstrated similar levels of RNA in all transduced clones. However, the amount of MGMT protein and DNA repair activity was reduced in clones expressing the P140A/G156A mutant compared with those expressing WTMGMT or P140A. Expression of P140A was associated with a 4- to 8-fold increase in resistance to 6-BG depletion of MGMT in transduced L1210 clones and a 1, 3-bis(2-chloroethyl)-1-nitrosourea IC(50) of 50 microM (compared with 27.5 microM for WTMGMT) in primary murine hematopoietic cells. These results demonstrate the utility of screening 6-BG-resistant MGMT proteins in hematopoietic cells and provide evidence that the P140A mutant form of MGMT generates 6-BG- and CENU-resistant hematopoietic cells. Retrovirus vectors expressing this mutant may be useful in future human gene therapy trials.  (+info)

The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). (48/3529)

The DNA sequence d(G(4)T(4)G(4)) [Oxy-1.5] consists of 1.5 units of the repeat in telomeres of Oxytricha nova and has been shown by NMR and X-ray crystallographic analysis to form a dimeric quadruplex structure with four guanine-quartets. However, the structure reported in the X-ray study has a fundamentally different conformation and folding topology compared to the solution structure. In order to elucidate the possible role of different counterions in this discrepancy and to investigate the conformational effects and dynamics of ion binding to G-quadruplex DNA, we compare results from further experiments using a variety of counterions, namely K(+), Na(+)and NH(4)(+). A detailed structure determination of Oxy-1.5 in solution in the presence of K(+)shows the same folding topology as previously reported with the same molecule in the presence of Na(+). Both conformations are symmetric dimeric quadruplexes with T(4)loops which span the diagonal of the end quartets. The stack of quartets shows only small differences in the presence of K(+)versus Na(+)counterions, but the T(4)loops adopt notably distinguishable conformations. Dynamic NMR analysis of the spectra of Oxy-1.5 in mixed Na(+)/K(+)solution reveals that there are at least three K(+)binding sites. Additional experiments in the presence of NH(4)(+)reveal the same topology and loop conformation as in the K(+)form and allow the direct localization of three central ions in the stack of quartets and further show that there are no specific NH(4)(+)binding sites in the T(4)loop. The location of bound NH(4)(+)with respect to the expected coordination sites for Na(+)binding provides a rationale for the difference observed for the structure of the T(4)loop in the Na(+)form, with respect to that observed for the K(+)and NH(4)(+)forms.  (+info)