A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating. (1/530)

Oriented cell growth requires the specification of a site for polarized growth and subsequent orientation of the cytoskeleton towards this site. During mating, haploid Saccharomyces cerevisiae cells orient their growth in response to a pheromone gradient overriding an internal landmark for polarized growth, the bud site. This response requires Cdc24p, Far1p, and a heterotrimeric G-protein. Here we show that a two- hybrid interaction between Cdc24p and Gbeta requires Far1p but not pheromone-dependent MAP-kinase signaling, indicating Far1p has a role in regulating the association of Cdc24p and Gbeta. Binding experiments demonstrate that Cdc24p, Far1p, and Gbeta form a complex in which pairwise interactions can occur in the absence of the third protein. Cdc24p localizes to sites of polarized growth suggesting that this complex is localized. In the absence of CDC24-FAR1-mediated chemotropism, a bud site selection protein, Bud1p/Rsr1p, is essential for morphological changes in response to pheromone. These results suggest that formation of a Cdc24p-Far1p-Gbetagamma complex functions as a landmark for orientation of the cytoskeleton during growth towards an external signal.  (+info)

Roles of G-protein beta gamma, arachidonic acid, and phosphorylation inconvergent activation of an S-like potassium conductance by dopamine, Ala-Pro-Gly-Trp-NH2, and Phe-Met-Arg-Phe-NH2. (2/530)

Dopamine and the neuropeptides Ala-Pro-Gly-Trp-NH2 (APGWamide or APGWa) and Phe-Met-Arg-Phe-NH2 (FMRFamide or FMRFa) all activate an S-like potassium channel in the light green cells of the mollusc Lymnaea stagnalis, neuroendocrine cells that release insulin-related peptides. We studied the signaling pathways underlying the responses, the role of the G-protein betagamma subunit, and the interference by phosphorylation pathways. All responses are blocked by an inhibitor of arachidonic acid (AA) release, 4-bromophenacylbromide, and by inhibitors of lipoxygenases (nordihydroguaiaretic acid and AA-861) but not by indomethacin, a cyclooxygenase inhibitor. AA and phospholipase A2 (PLA2) induced currents with similar I-V characteristics and potassium selectivity as dopamine, APGWa, and FMRFa. PLA2 occluded the response to FMRFa. We conclude that convergence of the actions of dopamine, APGWa, and FMRFa onto the S-like channel occurs at or upstream of the level of AA and that formation of lipoxygenase metabolites of AA is necessary to activate the channel. Injection of a synthetic peptide, which interferes with G-protein betagamma subunits, inhibited the agonist-induced potassium current. This suggests that betagamma subunits mediate the response, possibly by directly coupling to a phospholipase. Finally, the responses to dopamine, APGWa, and FMRFa were inhibited by activation of PKA and PKC, suggesting that the responses are counteracted by PKA- and PKC-dependent phosphorylation. The PLA2-activated potassium current was inhibited by 8-chlorophenylthio-cAMP but not by 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA did inhibit the potassium current induced by irreversible activation of the G-protein using GTP-gamma-S. Thus, it appears that PKA targets a site downstream of AA formation, e.g., the potassium channel, whereas PKC acts at the active G-protein or the phospholipase.  (+info)

Characterizing the interactions between the two subunits of the p101/p110gamma phosphoinositide 3-kinase and their role in the activation of this enzyme by G beta gamma subunits. (3/530)

Recently, we have reported the purification and cloning of a novel G protein betagamma subunit-activated phosphoinositide 3-kinase from pig neutrophils. The enzyme comprises a p110gamma catalytic subunit and a p101 regulatory subunit. Now we have cloned the human ortholog of p101 and generated panels of p101 and p110gamma truncations and deletions and used these in in vitro and in vivo assays to determine the protein domains responsible for subunit interaction and activation by betagamma subunits. Our results suggest large areas of p101 including both N- and C-terminal portions interact with the N-terminal half of p110gamma. While modifications of the N terminus of p110gamma could modulate its intrinsic catalytic activity, binding to the N-terminal region of p101 was found to be indispensable for activation of heterodimers with Gbetagamma.  (+info)

Ribozyme approach identifies a functional association between the G protein beta1gamma7 subunits in the beta-adrenergic receptor signaling pathway. (4/530)

The complex role that the heterotrimeric G proteins play in signaling pathways has become increasingly apparent with the cloning of countless numbers of receptors, G proteins, and effectors. However, in most cases, the specific combinations of alpha and betagamma subunits comprising the G proteins that participate in the most common signaling pathways, such as beta-adrenergic regulation of adenylyl cyclase activity, are not known. The extent of this problem is evident in the fact that the identities of the betagamma subunits that combine with the alpha subunit of Gs are only now being elucidated almost 20 years after its initial purification. In a previous study, we described the first use of a ribozyme strategy to suppress specifically the expression of the gamma7 subunit of the G proteins, thereby identifying a specific role of this protein in coupling the beta-adrenergic receptor to stimulation of adenylyl cyclase activity in HEK 293 cells. In the present study, we explored the potential utility of a ribozyme approach directed against the gamma7 subunit to identify functional associations with a particular beta and alphas subunit of the G protein in this signaling pathway. Accordingly, HEK 293 cells were transfected with a ribozyme directed against the gamma7 subunit, and the effects of this manipulation on levels of the beta and alphas subunits were determined by immunoblot analysis. Among the five beta alphas subunits detected in these cells, only the beta1 subunit was coordinately reduced following treatment with the ribozyme directed against the gamma7 subunit, thereby demonstrating a functional association between the beta1 and gamma7 subunits. The mechanism for coordinate suppression of the beta1 subunit was due to a striking change in the half-life of the beta1 monomer versus the beta1 heterodimer complexed with the gamma7 subunit. Neither the 52- nor 45-kDa subunits were suppressed following treatment with the ribozyme directed against the gamma7 subunit, thereby providing insights into the assembly of the Gs heterotrimer. Taken together, these data show the utility of a ribozyme approach to identify the role of not only the gamma subunits but also the beta subunits of the G proteins in signaling pathways.  (+info)

Sequestration of G-protein beta gamma subunits by different G-protein alpha subunits blocks voltage-dependent modulation of Ca2+ channels in rat sympathetic neurons. (5/530)

The membrane-delimited and voltage-dependent inhibition of N-type Ca2+ channels is mediated by Gbeta gamma subunits. Previously, exogenous excess GDP-bound GalphaoA has been shown to dramatically attenuate the norepinephrine (NE)-mediated Ca2+ current inhibition by sequestration of Gbeta gamma subunits in rat superior cervical ganglion (SCG) neurons. In the present study, we determined whether the attenuation of NE-mediated modulation is specific to GalphaoA or shared by a number of closely related (Galphatr, GalphaoB, Galphai1, Galphai2, Galphai3, Galphaz) or unrelated (Galphas, Galphaq, Galpha11, Galpha16, Galpha12, Galpha13) Galpha subunits. Individual Galpha subunits from different subfamilies were transiently overexpressed in SCG neurons by intranuclear injection of mammalian expression vectors encoding the desired protein. Strikingly, all Galpha subunits except Galphaz nearly blocked basal facilitation and NE-mediated modulation. Likewise, VIP-mediated Ca2+ current inhibition, which is mediated by cholera toxin-sensitive G-protein, was also completely suppressed by a number of Galpha subunits overexpressed in neurons. Galphas expression produced either enhancement or attenuation of the VIP-mediated modulation-an effect that seemed to depend on the expression level. The onset of the nonhydrolyzable GTP analog, guanylylimidodiphosphate-mediated facilitation was significantly delayed by overexpression of different GDP-bound Galpha subunits. Taken together, these data suggest that a wide variety of Galpha subunits are capable of forming heterotrimers with endogenous Gbeta gamma subunits mediating voltage-dependent Ca2+ channel inhibition. In conclusion, coupling specificity in signal transduction is unlikely to arise as a result of restricted Galpha/Gbeta gamma interaction.  (+info)

A lobster phospholipase C-beta that associates with G-proteins in response to odorants. (6/530)

A cDNA clone encoding a protein of 1116 amino acids with significant homology to beta-isoforms of phospholipase C was isolated from lobster olfactory organ cDNA libraries and named lobPLCbeta. This cDNA hybridized predominantly to a 9 kb transcript in RNA from olfactory organ, pereiopod, brain, and eye-eyestalk and to several smaller minor transcripts only in eye-eyestalk. An antiserum raised to the C terminus of lobPLCbeta detected immunoreactivity in a single 130 kDa band in olfactory aesthetasc hairs, olfactory organ, pereiopod, dactyl, and brain. In eye-eyestalk this 130 kDa band was abundant, and minor bands of 100, 79, and 57 kDa also were detected. In cross sections of the aesthetasc hairs, immunoreactivity was detected in the outer dendritic segments of the olfactory receptor neurons, the site of olfactory transduction. A complex odorant caused lobPLCbeta immunoreactivity to increase in membrane fractions and decrease in soluble fractions of homogenates of aesthetasc hairs. The odorant also increased the amount of lobPLCbeta in immunoprecipitates of Galphaq and Gbeta from homogenates of aesthetasc hairs. These results support the conclusion that lobPLCbeta mediates olfactory transduction.  (+info)

Gbetagamma and palmitate target newly synthesized Galphaz to the plasma membrane. (7/530)

The subcellular location of a signaling protein determines its ability to transmit messages accurately and efficiently. Three different lipid modifications tether heterotrimeric G proteins to membranes: alpha subunits are myristoylated and/or palmitoylated, and gamma subunits are prenylated. In a previous study, we examined the role of lipid modifications in maintaining the membrane attachment of a G protein alpha subunit, alphaz, which is myristoylated and palmitoylated (Morales, J., Fishburn, C. S., Wilson, P. T., and Bourne, H. R. (1998) Mol. Biol. Cell 9, 1-14). Now we extend this analysis by characterizing the mechanisms that target newly synthesized alphaz to the plasma membrane (PM) and analyze the role of lipid modifications in this process. In comparison with newly synthesized alphas, which is palmitoylated but not myristoylated, alphaz moves more rapidly to the membrane fraction following synthesis in the cytosol. Newly synthesized alphaz associates randomly with cellular membranes, but with time accumulates at the PM. Palmitoylated alphaz is present only in PM-enriched fractions, whereas a nonpalmitoylated mutant of alphaz (alphazC3A) associates less stably with the PM than does wild-type alphaz. Expression of a C-terminal fragment of the beta-adrenoreceptor kinase, which sequesters free betagamma, impairs association of both alphaz and alphazC3A with the PM, suggesting that the alpha subunit must bind betagamma in order to localize at the PM. Based on these findings, we propose a model in which, following synthesis on soluble ribosomes, myristoylated alphaz associates randomly and reversibly with membranes; upon association with the PM, alphaz binds betagamma, which promotes its palmitoylation, thus securing it in the proper place for transmitting the hormonal signal.  (+info)

Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. (8/530)

We have shown previously that the betagamma subunits of the heterotrimeric G proteins regulate the organization of the pericentriolarly localized Golgi stacks. In this report, evidence is presented that the downstream target of Gbetagamma is protein kinase D (PKD), an isoform of protein kinase C. PKD, unlike other members of this class of serine/threonine kinases, contains a pleckstrin homology (PH) domain. Our results demonstrate that Gbetagamma directly activates PKD by interacting with its PH domain. Inhibition of PKD activity through the use of pharmacological agents, synthetic peptide substrates, and, more specifically, the PH domain of PKD prevents Gbetagamma-mediated Golgi breakdown. Our findings suggest a possible mechanism by which the direct interaction of Gbetagamma with PKD regulates the dynamics of Golgi membranes and protein secretion.  (+info)