Cell polarization: chemotaxis gets CRACKing. (1/11034)

An early stage in the establishment of cell polarity during chemotaxis of Dictyostelium dicoideum has been identified by a recent study; the new results also show that the development of cell polarity does not rely upon cytoskeletal rearrangement, and may use a spatial sensing mechanism.  (+info)

Transformation mediated by RhoA requires activity of ROCK kinases. (2/11034)

BACKGROUND: The Ras-related GTPase RhoA controls signalling processes required for cytoskeletal reorganisation, transcriptional regulation, and transformation. The ability of RhoA mutants to transform cells correlates not with transcription but with their ability to bind ROCK-I, an effector kinase involved in cytoskeletal reorganisation. We used a recently developed specific ROCK inhibitor, Y-27632, and ROCK truncation mutants to investigate the role of ROCK kinases in transcriptional activation and transformation. RESULTS: In NIH3T3 cells, Y-27632 did not prevent the activation of serum response factor, transcription of c-fos or cell cycle re-entry following serum stimulation. Repeated treatment of NIH3T3 cells with Y-27632, however, substantially disrupted their actin fibre network but did not affect their growth rate. Y-27632 blocked focus formation by RhoA and its guanine-nucleotide exchange factors Dbl and mNET1. It did not affect the growth rate of cells transformed by Dbl and mNET1, but restored normal growth control at confluence and prevented their growth in soft agar. Y-27632 also significantly inhibited focus formation by Ras, but had no effect on the establishment or maintenance of transformation by Src. Furthermore, it significantly inhibited anchorage-independent growth of two out of four colorectal tumour cell lines. Consistent with these data, a truncated ROCK derivative exhibited weak ability to cooperate with activated Raf in focus formation assays. CONCLUSIONS: ROCK signalling is required for both the establishment and maintenance of transformation by constitutive activation of RhoA, and contributes to the Ras-transformed phenotype. These observations provide a potential explanation for the requirement for Rho in Ras-mediated transformation. Moreover, the inhibition of ROCK kinases may be of therapeutic use.  (+info)

Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. (3/11034)

The vacuolar protein sorting (VPS) pathway of Saccharomyces cerevisiae mediates transport of vacuolar protein precursors from the late Golgi to the lysosome-like vacuole. Sorting of some vacuolar proteins occurs via a prevacuolar endosomal compartment and mutations in a subset of VPS genes (the class D VPS genes) interfere with the Golgi-to-endosome transport step. Several of the encoded proteins, including Pep12p/Vps6p (an endosomal target (t) SNARE) and Vps45p (a Sec1p homologue), bind each other directly [1]. Another of these proteins, Vac1p/Pep7p/Vps19p, associates with Pep12p and binds phosphatidylinositol 3-phosphate (PI(3)P), the product of the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) [1] [2]. Here, we demonstrate that Vac1p genetically and physically interacts with the activated, GTP-bound form of Vps21p, a Rab GTPase that functions in Golgi-to-endosome transport, and with Vps45p. These results implicate Vac1p as an effector of Vps21p and as a novel Sec1p-family-binding protein. We suggest that Vac1p functions as a multivalent adaptor protein that ensures the high fidelity of vesicle docking and fusion by integrating both phosphoinositide (Vps34p) and GTPase (Vps21p) signals, which are essential for Pep12p- and Vps45p-dependent targeting of Golgi-derived vesicles to the prevacuolar endosome.  (+info)

Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. (4/11034)

In COS cells, Ral GDP dissociation stimulator (RalGDS)-induced Ral activation was stimulated by RasG12V or a Rap1/Ras chimera in which the N-terminal region of Rap1 was ligated to the C-terminal region of Ras but not by Rap1G12V or a Ras/Rap1 chimera in which the N-terminal region of Ras was ligated to the C-terminal region of Rap1, although RalGDS interacted with these small GTP-binding proteins. When RasG12V, Ral and the Rap1/Ras chimera were individually expressed in NIH3T3 cells, they localized to the plasma membrane. Rap1Q63E and the Ras/Rap1 chimera were detected in the perinuclear region. When RalGDS was expressed alone, it was abundant in the cytoplasm. When coexpressed with RasG12V or the Rap1/Ras chimera, RalGDS was detected at the plasma membrane, whereas when coexpressed with Rap1Q63E or the Ras/Rap1 chimera, RalGDS was observed in the perinuclear region. RalGDS which was targeted to the plasma membrane by the addition of Ras farnesylation site (RalGDS-CAAX) activated Ral in the absence of RasG12V. Although RalGDS did not stimulate the dissociation of GDP from Ral in the absence of the GTP-bound form of Ras in a reconstitution assay using the liposomes, RalGDS-CAAX could stimulate it without Ras. RasG12V activated Raf-1 when they were coexpressed in Sf9 cells, whereas RasG12V did not affect the RalGDS activity. These results indicate that Ras recruits RalGDS to the plasma membrane and that the translocated RalGDS induces the activation of Ral, but that Rap1 does not activate Ral due to distinct subcellular localization.  (+info)

Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. (5/11034)

Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.  (+info)

The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. (6/11034)

Polarized secretion requires proper targeting of secretory vesicles to specific sites on the plasma membrane. Here we report that the exocyst complex plays a key role in vesicle targeting. Sec15p, an exocyst component, can associate with secretory vesicles and interact specifically with the rab GTPase, Sec4p, in its GTP-bound form. A chain of protein-protein interactions leads from Sec4p and Sec15p on the vesicle, through various subunits of the exocyst, to Sec3p, which marks the sites of exocytosis on the plasma membrane. Sec4p may control the assembly of the exocyst. The exocyst may therefore function as a rab effector system for targeted secretion.  (+info)

Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. (7/11034)

Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  (+info)

Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. (8/11034)

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)