Buffer effects on electric signals of light-excited bacteriorhodopsin. (1/55)

Buffers change the electric signals of light-excited bacteriorhodopsin molecules in purple membrane if their concentration and the pH of the low-salt solution are properly selected. "Positive" buffers produce a positive component, and "negative" buffers a negative component in addition to the signals due to proton pumping. Measurement of the buffer effects in the presence of glycyl-glycine or bis-tris propane revealed an increase of approximately 2 and a change of sign and a decrease to approximately -0.5 in the translocated charge in these cases, respectively. These factors do not depend on temperature. The Arrhenius parameters established from the evaluation of the kinetics indicate activation enthalpies of 35-40 kJ/mol and negative activation entropies for the additional signals. These values agree with those found by surface-bound pH-sensitive probes in the search of the timing of proton release and uptake. The electric signals were also measured in the case of D(2)O solutions with similar results, except for the increased lifetimes. We offer a unified explanation for the data obtained with surface-bound probes and electric signals based on the clusters at extracellular and cytoplasmic sites of bacteriorhodopsin participating in proton release and uptake.  (+info)

Determination of the mechanism and kinetic constants for hog kidney gamma-glutamyltransferase. (2/55)

The initial-velocity kinetics of hog kidney gamma-glutamyltransferase were studied. Glutamate gamma-(4-nitroanilide) and its 3-carboxy derivative, glutamate gamma-(3-carboxy-4-nitroanilide), served as gamma-glutamyl donors, and glycylglycine as an acceptor. Reaction products were identified by paper chromatography and amino acid analysis. Inhibited Ping Pong mechanisms and a comprehensive initial- velocity expression were developed which account for the observed simultaneous gamma-glutamyl transfer and autotransfer, competitive inhibition by glycylglycine, and non-competitive inhibition by the carboxy donor. The validity of the proposed Ping Pong mechanisms are supported by enzyme-velocity data obtained with constant ratios of acceptor to donor concentrations. Kinetic constants were determined by a non-linear regression analysis. With glutamate gamma-(4-nitroanilide) as the donor, Michaelis constants for the donor, acceptor and donor-acting-as-acceptor are 1.87, 24.9, and 2.08 mM respectively. With glutamate gamma-(3-carboxy-4-nitroanilide) as the donor, these Michaelis constants are 1.63, 16.6, and 12.3 mM. Glyclyglycine competitive inhibition constants with the parent donor and its carboxy derivative are 275 and 205 mM respectively; the non-competitive inhibition constant of the carboxy donor is 34 mM.  (+info)

Functional expression of novel peptide transporter in renal basolateral membranes. (3/55)

We examined the peptide transport activity in renal basolateral membranes. [(14)C]glycylsarcosine (Gly-Sar) uptake in rat renal cortical slices was saturable and inhibited by excess dipeptide and aminocephalosporin cefadroxil. When several renal cell lines were screened for the basolateral peptide transport activity, Madin-Darby canine kidney (MDCK) cells were demonstrated to have the greatest transport activity. [(14)C]Gly-Sar uptake across the basolateral membranes of MDCK cells was inhibited by di- and tripeptide and decreased with decreases in extracellular pH from 7.4 to 5.0. The Michaelis-Menten constant value of [(14)C]Gly-Sar uptake across the basolateral membranes of MDCK cells was 71 microM. The basolateral peptide transporter in MDCK cells showed several different [(14)C]Gly-Sar transport characteristics in growth dependence, pH profile, substrate affinity, and sensitivities to chemical modifiers from those of the apical H(+)-peptide cotransporter of MDCK cells. The findings of the present investigation indicated that the peptide transporter was expressed in the renal basolateral membranes. In addition, from the functional characteristics, the renal basolateral peptide transporter was suggested to be distinguishable from known peptide transporters, i.e., H(+)-peptide cotransporters (PEPT1 and PEPT2) and the intestinal basolateral peptide transporter.  (+info)

In vitro permeation of beta-lactam antibiotics across rat jejunum and its correlation with oral bioavailability in humans. (4/55)

AIMS: To investigate the correlation between in vitro permeation of 11 beta-lactam antibiotics across rat jejunum and their oral bioavailability in humans. METHODS: The absorptive and secretory permeation across rat jejunum was evaluated and apparent permeability coefficients (P(app)) were determined. RESULTS: A steep, sigmoid-type curve was obtained for the relationship between P(app) in the absorptive permeation and human oral bioavailability. When the ratios of P(app) in the absorptive direction to P(app) in the secretory direction were plotted against human oral bioavailability, a much improved correlation was obtained (r = 0.98, P < 0.001). The addition of glycylglycine to both mucosal and serosal media modified the permeation of ceftibuten and cephalexin from the absorptive to the secretory direction. CONCLUSIONS: For 11 beta-lactam antibiotics rat intestinal permeation correlated well with human oral bioavailability, especially when corrected for secretory transport.  (+info)

Intestinal absorption in normal Indian and English people. (5/55)

The absorption of glycine, glycylglycine, water, and electrolytes was studied by intestinal perfusion in normal Indian and English people. Compared with the English people the Indians showed impaired absorption of all four substances. In the Indians the absorption of glycine and glycylglycine was impaired to the same extent, so that the kinetic advantage of glycylglycine as compared with glycine was preserved. The reduced absorption in the Indians may be the functional counterpart of the minor morphological changes seen in the jejunal mucosa of people living in southern India.  (+info)

Theanine, gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. (6/55)

The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  (+info)

Developmental changes in the activity of membrane-bound gamma-glutamyl transpeptidase and in the sialylation of synaptosomal membranes from the chick embryonic brain. (7/55)

gamma-Glutamyl transpeptidase (GGT) is a membrane-bound sialoglycoprotein. The developmental changes in GGT activity and in sialic acid content were determined in a crude synaptosomal membrane fraction from the cerebral hemispheres of the chick embryo between days 11 and 19 of incubation. The GGT activity increased almost eightfold during the examined developmental period, while sialic acid content rose significantly only between days 11 and 15. Cortical administered on day 13 significantly increased GGT activity. On the other hand, the content of membrane bound sialic acid was not substantially affected. The value of the GGT apparent Michaelis constant (Kmapp) for gamma-glutamyl-p-nitroanilide in the presence of 20 mmol.l-1 glycylglycine was 1.5 mmol.l-1 and cortisol did not influence it. However, Vmax was increased by this hormone. The affinity of GGT to concanavalin A (ConA) did not change during development. Neither the administration of cortisol nor neuroaminidase treatment had any effect on the interaction of GGT with ConA. Desialylation of crude synaptosomal fraction did not change GGT activity. The results presented here suggest no developmental nor functional relationship between the activity of GGT and the level of sialylation in synaptosomal membranes from the cerebral hemispheres of the chick embryo.  (+info)

Elimination of water from the carboxyl group of GlyGlyH+. (8/55)

The elimination of water from the carboxyl group of protonated diglycine has been investigated by density functional theory calculations. The resulting structure is identical to the b(2) ion formed in the mass spectrometric fragmentation of protonated peptides (therefore named "b2" in this study). The most stable geometry of the fragment ion ("b2") is an O-protonated diketopiperazine. However, its formation is kinetically disfavored as it requires a free energy of 58.2 kcal/mol. The experimentally observed N-protonated oxazolone is 3.0 kcal/mol less stable. The lowest energy pathway for the formation of the "b2" ion requires a free energy of 37.5 kcal/mol and involves the proton transfer from the amide oxygen of protonated diglycine to the hydroxyl oxygen. Fragmentation initiated by proton transfer from the terminal nitrogen has also a comparable free energy of activation (39.4 kcal/mol). Proton transfer initiating the fragmentation, from the highly basic terminal nitrogen or amide oxygen to the less basic hydroxyl oxygen is feasible at energies reached in usual mass spectrometric experiments. Amide N-protonated diglycine structures are precursors of mainly y(1) ions rather than "b2" ions. In the lowest energy fragmentation channels, proton transfer to the hydroxylic oxygen, bond breaking and formation of an oxazolone ring occur concertedly but asynchronously. Proton transfer to hydroxyl oxygen and cleavage of the corresponding C-O bond take place at the early stages of the fragmentation step, while ring closure to form an oxazolone geometry occurs at the later stages of the transition. The experimentally observed low kinetic energy release is expected to be due to the existence of a strongly hydrogen bonded protonated oxazolone-water complex in the exit channel. Whereas the threshold energy for "b2" ion formation (37.1 kcal/mol) is lower than for the y(1) ion (38.4 kcal/mol), the former requires a tight transition state with an activation entropy, DeltaS++ = -1.2 cal/mol.K and the latter has a loose transition state with DeltaS++ = +8.8 cal/mol.K. This leads to y(1) being the major fragment ion over a wide energy range.  (+info)