Effects of stimulants of abuse on extrapyramidal and limbic neuropeptide Y systems. (1/671)

Neuropeptide Y (NPY), an apparent neuromodulating neuropeptide, has been linked to dopamine systems and dopamine-related psychotic disorders. Because of this association, we determined and compared the effects of psychotomimetic drugs on extrapyramidal and limbic NPY systems. We observed that phencyclidine, methamphetamine (METH), (+)methylenedioxymethamphetamine (MDMA), and cocaine, but not (-)MDMA, similarly reduced the striatal content of NPY-like immunoreactivity from 54% (phencyclidine) to 74% [(+) MDMA] of control. The effects of METH on NPY levels in the nucleus accumbens, caudate nucleus, globus pallidus, and substantia nigra were characterized in greater detail. We observed that METH decreased NPY levels in specific regions of the nucleus accumbens and the caudate, but had no effect on NPY in the globus pallidus or the substantia nigra. The dopamine D1 receptor antagonist SCH-23390 blocked these effects of METH, suggesting that NPY levels throughout the nucleus accumbens and the caudate are regulated through D1 pathways. The D2 receptor antagonist eticlopride did not appear to alter the METH effect, but this was difficult to determine because eticlopride decreased NPY levels by itself. A single dose of METH was sufficient to lower NPY levels, in some, but not all, regions examined. The effects on NPY levels after multiple METH administrations were substantially greater and persisted up to 48 h after treatment; this suggests that synthesis of this neuropeptide may be suppressed even after the drug is gone. These findings suggest that NPY systems may contribute to the D1 receptor-mediated effects of the psychostimulants.  (+info)

Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer's disease. (2/671)

To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer's disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (rho0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with rho0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in rho0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.  (+info)

The effects of posteroventral pallidotomy on the preparation and execution of voluntary hand and arm movements in Parkinson's disease. (3/671)

We studied the effect of posteroventral pallidotomy on movement preparation and execution in 27 parkinsonian patients using various motor tasks. Patients were evaluated after overnight withdrawal of medication before and 3 months after unilateral pallidotomy. Surgery had no effect on initiation time in unwarned simple and choice reaction time tasks, whereas movement time measured during the same tasks was improved for the contralesional hand. Movement times also improved for isometric and isotonic ballistic movements. In contrast, repetitive, distal and fine movements measured in finger-tapping and pegboard tasks were not improved after pallidotomy. Preparatory processes were investigated using both behavioural and electrophysiological measures. A precued choice reaction time task suggested an enhancement of motor preparation for the contralesional hand. Similarly, movement-related cortical potentials showed an increase in the slope of the late component (NS2) when the patients performed joystick movements with the contralesional hand. However, no significant change was found for the early component (NS1) or when the patient moved the ipsilesional hand. The amplitude of the long-latency stretch reflex of the contralesional hand decreased after surgery. In summary, the data suggest that pallidotomy improved mainly the later stages of movement preparation and the execution of proximal movements with the contralesional limb. These results provide detailed quantitative data on the impact of posteroventral pallidotomy on previously described measures of upper limb akinesia in Parkinson's disease.  (+info)

Cognitive outcome after unilateral pallidal stimulation in Parkinson's disease. (4/671)

OBJECTIVES: Chronic high frequency electrostimulation of the globus pallidus internus mimics pallidotomy and improves clinical symptoms in Parkinson's disease. The aim of this study was to investigate the cognitive consequences of unilateral deep brain stimulation. METHODS: Twenty non-demented patients with Parkinson's disease (age range 38-70 years) were neuropsychologically assessed 2 months before and 3 months after unilateral pallidal stimulation. The cognitive assessment included measures of memory, spatial behaviour, and executive and psychomotor function. In addition to group analysis of cognitive change, a cognitive impairment index (CII) was calculated for each individual patient representing the percentage of cognitive measures that fell more than 1 SD below the mean of a corresponding normative sample. RESULTS: Neurological assessment with the Hoehn and Yahr scale and the unified Parkinson's disease rating scale disclosed a significant postoperative reduction in average clinical Parkinson's disease symptomatology (p<0.001). Repeated measures multivariate analysis of variance (using right/left side of stimulation as a between subjects factor) showed no significant postoperative change in cognitive performance for the total patient group (main effect of operation). The side of stimulation did not show a significant differential effect on cognitive performance (main effect of lateralisation). There was no significant operation by lateralisation interaction effect. Although the patients experienced significant motor symptom relief after pallidal stimulation, they remained mildly depressed after surgery. Analysis of the individual CII changes showed a postoperative cognitive decline in 30% of the patients. These patients were significantly older and took higher preoperative doses of levodopa than patients showing no change or a postoperative cognitive improvement. CONCLUSIONS: Left or right pallidal stimulation for the relief of motor symptoms in Parkinson's disease seems relatively safe, although older patients and patients needing high preoperative doses of levodopa seem to be more vulnerable for cognitive decline after deep brain stimulation.  (+info)

Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson's disease. (5/671)

The purpose of this study was to examine the relationship between lesion location and clinical outcome following globus pallidus internus (GPi) pallidotomy for advanced Parkinson's disease. Thirty-three patients were prospectively studied with extensive neurological examinations before and at 6 and 12 months following microelectrode-guided pallidotomy. Lesion location was characterized using volumetric MRI. The position of lesions within the posteroventral region of the GPi was measured, from anteromedial to posterolateral along an axis parallel to the internal capsule. To relate lesion position to clinical outcome, hierarchical multiple regression analysis was used. The variance in outcome measures that was related to preoperative scores and lesion volume was first calculated, and then the remaining variance attributable to lesion location was determined. Lesion location along the anteromedial-to-posterolateral axis within the GPi influenced the variance in total score on the Unified Parkinson's Disease Rating Scale in the postoperative 'off' period, and in 'on' period dyskinesia scores. Within the posteroventral GPi, anteromedial lesions were associated with greater improvement in 'off' period contralateral rigidity and 'on' period dyskinesia, whereas more centrally located lesions correlated with better postoperative scores of contralateral akinesia and postural instability/gait disturbance. Improvement in contralateral tremor was weakly related to lesion location, being greater with posterolateral lesions. We conclude that improvement in specific motor signs in Parkinson's disease following pallidotomy is related to lesion position within the posteroventral GPi. These findings are consistent with the known segregated but parallel organization of specific motor circuits in the basal ganglia, and may explain the variability in clinical outcome after pallidotomy and therefore have important therapeutic implications.  (+info)

Reassessment of unilateral pallidotomy in Parkinson's disease. A 2-year follow-up study. (6/671)

Unilateral pallidotomy has gained popularity in treating the motor symptoms of Parkinson's disease. We present the results of a 2-year post-pallidotomy follow-up study. Using the Unified Parkinson's Disease Rating Scale (UPDRS), the Goetz dyskinesia scale and the Purdue Pegboard Test (PPBT), we evaluated 20 patients at regular intervals both off and on medications for 2 years post-pallidotomy. There were no significant changes in the dosages of antiparkinsonian medications from 3 months pre-pallidotomy to 2 years post-pallidotomy. On the side contralateral to the operation, the improvements were preserved in 'on'-state dyskinesia (83% reduction from pre-pallidotomy to 2 years post-pallidotomy, P < 0.001) and 'off'-state tremor (90% reduction from pre-pallidotomy to 2 years post-pallidotomy, P = 0.005). There were no statistically significant differences between pre-pallidotomy scores and those at 2 years post-pallidotomy in ipsilateral dyskinesia, axial dyskinesia, 'off'- or 'on'-state PPBT, 'off'-state Activities of Daily Living (ADL) and 'off'-state gait and postural stability. After 2 years, the 'on'-state ADL scores worsened by 75%, compared with pre-pallidotomy (P = 0.005). We conclude that 2 years after pallidotomy, the improvements in dyskinesia and tremor on the side contralateral to pallidotomy are preserved, while the initial improvements in most other deficits disappear, either because of progression of pathology or loss of the early efficacy achieved by surgery.  (+info)

Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. (7/671)

Thalamocortical axons (TCAs), which originate in dorsal thalamus, project ventrally in diencephalon and then dorsolaterally in ventral telencephalon to their target, the neocortex. To elucidate potentially key decision points in TCA pathfinding and hence the possible localization of guidance cues, we used DiI-tracing to describe the initial trajectory of TCAs in mice. DiI-labeled TCAs extend ventrally on the lateral surface of ventral thalamus. Rather than continuing this trajectory onto the lateral surface of the hypothalamus, TCAs make a sharp lateral turn into ventral telencephalon. This behavior suggests that the hypothalamus is repulsive and the ventral telencephalon attractive for TCAs. In support of this hypothesis, we find that axon outgrowth from explants of dorsal thalamus is biased away from hypothalamus and toward ventral telencephalon when cocultured at a distance in collagen gels. The in vivo DiI analysis also reveals a broad cluster of retrogradely labeled neurons in the medial part of ventral telencephalon positioned within or adjacent to the thalamocortical pathway prior to or at the time TCAs are extending through it. The axons of these neurons extend into or through dorsal thalamus and appear to be coincident with the oppositely extending TCAs. These findings suggest that multiple cues guide TCAs along their pathway from dorsal thalamus to neocortex: TCAs may fasciculate on the axons of ventral telencephalic neurons as they extend through ventral thalamus and the medial part of ventral telencephalon, and chemorepellent and chemoattractant activities expressed by hypothalamus and ventral telencephalon, respectively, may cooperate to promote the turning of TCAs away from hypothalamus and into ventral telencephalon.  (+info)

Magnetization transfer contrast of various regions of the brain in liver cirrhosis. (8/671)

BACKGROUND AND PURPOSE: T1-weighted MR images show high signal intensity in the pallidum of many patients with liver cirrhosis. The purpose of this study was to evaluate quantitative changes in MR signals in patients with liver cirrhosis by using the magnetization transfer technique. METHODS: Magnetization transfer ratios were measured in seven different regions of the brain in 37 patients with liver cirrhosis and in 37 healthy volunteers. RESULTS: The magnetization transfer ratios in patients with liver cirrhosis were significantly lower than those in control subjects in the globus pallidus, putamen, thalamus, corona radiata, and subcortical white matter. CONCLUSION: Abnormal magnetization transfer ratios may be found in otherwise normal-appearing cerebral regions.  (+info)