Hard fallow deer antler: a living bone till antler casting? (1/92)

Deer antlers are the only mammalian bone structures which regenerate completely every year. Once developed, antlers are cleaned of the velvet-like skin. Presently it is believed that due to velvet shedding the blood supply is interrupted in the solidifying antler bone. Histological examinations were made on different parts of fallow deer antlers investigated from the time of velvet shedding till the antler casting. The present study on hard (polished) antlers revealed living bone with regions presenting living osteocytes, active osteoblasts, osteoid seams and even early stages of trabecular microcallus formation, thus indicating to a continuous bone remodeling. A well developed vascular system was found despite the presence of hard antler bone. The pedicle bone exhibits a rich supply of capillaries and vessels connected to the spongy core of the main branch and the compact bone as well. There is evidence that hard fallow deer antlers possess a functioning vascular system that "keeps the antler moist" resulting in a high impact resistance when fights are most frequent. As late as 3 weeks prior to antler casting a large number of living cells were discovered within the antler core. As we have no doubt that parts of the polished fallow deer antler represent a living bone, we have concluded that a sufficient blood supply of the antler core is maintained almost till the time of antler casting by vessels passing through the antler base.  (+info)

Role of oestradiol in the regulation of the seasonal antler cycle in female reindeer, Rangifer tarandus. (2/92)

Reindeer (or caribou), Rangifer tarandus, is the only extant species of deer in which females as well as males normally develop antlers that are cast and regrown each year. This study investigated the role of ovarian oestradiol in the regulation of the seasonal antler cycle in female reindeer. Ovariectomized Norwegian reindeer living outdoors in northern Norway (69 degrees N) were treated with continuous-release subcutaneous Silastic implants containing oestradiol, which maintained the blood concentrations of oestradiol within the physiological range for the mating season from June to October-November. The treatment with oestradiol induced the synchronized maturation of the antlers and rapid cleaning of the velvet-like skin in August-September in the ovariectomized reindeer, a pattern very similar to that observed in ovary-intact controls living under the same conditions. The removal of the steroid implant in October-November caused the premature casting of the antlers in early winter in two of five animals, while the remainder cast at the normal time in spring; this response was seen whether the animals had received one or two oestradiol implants in autumn. The antlers developed by the ovariectomized, oestradiol-treated females were significantly heavier and carried more branches than the ovariectomized animals without oestradiol replacement, and were marginally heavier than the antlers of intact controls. These results support the view that oestradiol is the biologically active steroid secreted by the ovary in intact female reindeers that induces the normal development of the antlers. Oestradiol stimulates the growth and mineralization of the antler bone, the cleaning of the velvet, and suppresses the casting of the hard antlers. This endocrine control ensures that the hard antlers, which function as weapons, are retained throughout the autumn and winter when the females are normally pregnant and when competition between females over food in the snow is most intense; hence there is a reproductive advantage to explain the evolution of antlers in females.  (+info)

Velvet antler polypeptides promoted proliferation of chondrocytes and osteoblast precursors and fracture healing. (3/92)

AIM: To study the effects of velvet antler (VA) total polypeptides (VATP) and VA polypeptides, VAP-A, VAP-B, and VAP-C on proliferation of chondrocytes and osteoblast precusors. METHODS: Chondrocytes (rabbit and human fetus) and osteoblast precusors (chick embryo) were incubated in the culture medium containing VATP or VAP-A, VAP-B, and VAP-C. [3H]TdR incorporation into DNA was measured. Fracture healing-promoting action of VATP was determined in rats. RESULTS: VATP 50-200 mg.L-1 and VAP-B 12.5, 25, and 50 mg.L-1 showed most marked proliferation-promoting activity for rabbit costed chondrocytes and increased incorporation of [3H]TdR from (73 +/- 9) Bq (control group) to (272 +/- 55), (327 +/- 38), and (415 +/- 32) Bq, respectively (P < 0.01). The activity of VAP-A was weaker than that of VAP-B, and VAP-C had no activity. VATP 10 and 20 mg.kg-1 by local injection into the cross-section fracture area accelerated healing of radial fracture. The healing rate of VATP-treated group was higher (75%) than that of control group (25%) (P < 0.05). CONCLUSION: VATP accelerated fracture healing by stimulating proliferation of chondrocytes and osteoblast precursors.  (+info)

Bone turnover associated with antler growth in red deer (Cervus elaphus). (4/92)

Although it is known that skeletal bone depletion occurs during antler growth in deer, it is not clear whether repletion of the skeleton takes place before or after completion of antler development. This study attempted to correlate repeated scanning electron microscopic measures of ilium and rib bone porosity from six approximately 2-monthly biopsy samples (using back-scattered imaging) and biochemical markers of bone turnover (serum hydroxyproline and osteocalcin concentrations) taken for 11 months with antler growth in six red deer stags. No changes were detected in ilium samples but changes in porosity of rib bones and an elevation of the biochemical markers indicated that skeletal depletion occurred during the antler growth period. However, the decrease in rib bone porosity and decline in markers of bone turnover took place before completion of antler growth, indicating that a considerable amount of skeletal repletion could have occurred whilst antlers were also undergoing bone accretion. This latter finding extends the current view of antler growth being accompanied by a form of reversible osteoporosis in the skeleton by showing that there is a period when the antlers and skeleton are both undergoing net bone formation.  (+info)

Cyproterone acetate reduced antler growth in surgically castrated fallow deer. (5/92)

We studied the role of androgens in antler growth. In particular, we investigated whether the onset of antler regrowth is triggered by a short-term pulse of testosterone and if low levels of androgens are required for antler growth. The study was conducted on 12 surgically castrated fallow deer bucks (Dama dama) aged approximately 27 months. Six animals (CA group) were given the antiandrogen, cyproterone acetate (CA, 1000 mg/treatment); the others were given vehicle solution only (control). Before each CA treatment, blood was sampled and analysed for testosterone, androstenedione, IGF-1, cortisol, FSH, and LH. CA treatment and blood sampling were performed 2 days before castration, on the day of castration and afterwards at 2-day intervals until day 22. Subsequently, CA treatment and blood sampling continued at weekly intervals until day 270. All animals cast their antlers, followed by antler regrowth in all control bucks, but in only four of the six CA-treated castrates. Plasma testosterone concentrations were low in all animals (between 0.01 and 0.20 ng/ml), but were significantly (P<0001) greater in the controls. In both groups, a temporary increase in testosterone values was recorded around the time of antler regrowth, the peak being significantly (P<0.01) higher in the controls. Androstenedione showed a similar pattern as testosterone. Plasma IGF-1 concentrations increased sharply during the antler growth spurt and did not differ significantly between the two groups throughout the study period. Cortisol concentrations were greater in controls than in the CA group. However, no link with the antler cycle was apparent. FSH and LH concentrations were higher in the controls for most of the study. Antlers produced by the control bucks were significantly larger than those in the CA group (P<0.03). For antler length, testosterone, androstenedione and IGF-1, areas under the curve (AUC) were calculated over the period of antler growth. For the pooled deer (n=12) significant correlations existed between AUCs of antler length and testosterone, but not for antler length and IGF-1. Also, a trend for a positive correlation between AUCs of antler length and androstenedione was noted. It is concluded that a plasma androgen concentration at least above a minimal threshold level is a necessary prerequisite for normal antler regrowth in fallow deer, and that this androgen effect is not mediated via circulating IGF-1. The biological role of low levels of androgens may be to sensitize antler cells to the stimulating effect of IGF.  (+info)

Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. (6/92)

The structure and relative degree of mineralisation of antler and pedicle bone of yearling red deer stags exposed either to low or high levels of environmental fluoride were determined by digital quantitative backscattered electron (BSE) imaging. Bone fluoride content (BFC) in antlers (845 +/- 86 mg F-/kg ash, arithmetic mean +/- S.E.M.) and pedicles (1448 +/- 154 mg F-/kg ash) of deer from a highly fluoride polluted area in North Bohemia (Czech Republic) were significantly higher (P < 0.001) than those of controls from uncontaminated regions in West Germany (antlers: 206 +/- 41, pedicles: 322 +/- 52 mg F-/kg ash). Mean (56.5 +/- 4.5%) and maximum (84.9 +/- 2.1%) mineralised bone area of the control antlers significantly (P < 0.05 and P < 0.001, respectively) exceeded the corresponding values for the N. Bohemian deer (43.3 +/- 1.3 and 73.3 +/- 1.9%, respectively), while the pedicles from the 2 groups did not differ significantly. In the pooled antler samples (n = 18), negative correlations existed between BFC and mean (r(s) = -0.62, P < 0.01) as well as maximum (r(s) = -0.69, P < 0.01) mineralised bone area. Morphological imaging revealed a decreased width and an increased porosity of the antler cortex in the N. Bohemian specimens. Mean (148.5 +/- 1.7) and maximum (154.2 +/- 1.7) BSE-signal intensities (= grey levels; range between a monobrominated (grey level 0) and a monoiodinated (grey level 255) dimethacrylate resin standard) of the antlers from the controls were significantly higher than those of the N. Bohemian deer (140.7 +/- 2.1 and 145.7 +/- 2.2, respectively; P < 0.05 for both comparisons). In the pooled antler samples, negative correlations between BFC and mean (r(s) = -0.51, P < 0.05) as well as maximum (r(s) = -0.52, P < 0.05) BSE-signal intensities were observed. No significant differences in mineralisation density parameters were found for the 2 pedicle samples, and BFC and mineralisation density of the pooled pedicles were uncorrelated. Morphological imaging revealed bone mottling (denoting increased remodelling activity) and frequent occurrence of apparently increased osteocyte lacunae in some of the pedicles from the N. Bohemian deer. It is concluded that the reduced amount of mineralised bone in, and the lower mineralisation density of, the N. Bohemian antlers resulted from a fluoride induced disturbance of bone mineralisation. The rapid growth of antlers leads both to a high mineral demand and a high rate of fluoride uptake during antlerogenesis. This, and the limited lifespan of antlers, which does not allow for a compensation of a delay in the onset or progression of the mineralisation process, renders antler bone particularly susceptible to fluoride. Antlers are therefore considered a useful model for studying fluoride effects on bone formation. Furthermore, analysis of cast antlers enables a noninvasive monitoring of environmental pollution by fluorides.  (+info)

Histological studies of pedicle skin formation and its transformation to antler velvet in red deer (Cervus elaphus). (7/92)

Deer antlers and their antecedent pedicles are made up of two components, interior osseocartilage and exterior integument. In a previous study, we described that histogenesis of the interior osseocartilage proceeds through four ossification stages. These are intramembranous (IMO), transition (OPC), pedicle endochondral (pECO), and antler endochondral (aECO). In the present study, we used histological techniques to examine pedicle skin formation and its transformation to antler velvet. The results showed that pedicle skin initiated from the apex of a frontal lateral crest and was formed through three distinctive stages. These stages are 1) compression of the subcutaneous loose connective tissue at the OPC stage, 2) stretching of the undulated epidermis at the early pECO stage, and 3) neogenesis of the skin and its associated appendages at the mid pECO stage. Transformation into antler velvet, which occurs at the late pECO stage, is mainly associated with alteration in the skin appendages. This alteration includes the loss of arrector pili muscle and sweat glands, and the gain of the large bi- or multi-lobed sebaceous glands. These results suggest that pedicle skin expansion occurs to release the mechanical tension created by underlying forming antlerogenic tissue, initially in response to it by mechanical stretch, and then by neogenesis of skin. In turn, the stretched pedicle skin may exert mechanical pressure on the underlying antlerogenic tissue causing it to change in ossification type. Antler velvet generation may be accomplished by both mechanical stimulation and chemical induction from the underlying pECO stage antlerogenic tissue. If this hypothesis is correct it is likely that mechanical stimulation would drive skin formation and chemical induction then determine skin type. Furthermore, asynchronous transformation of the interior and exterior components during pedicle formation and antler generation may result from the delayed chemical induction and the way antler velvet initially generates. The results from both mitotic cell labelling of the basal layer and ultrastructure of the basement membrane of the apical skin in the study support these hypotheses.  (+info)

Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation. (8/92)

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/-200 per well, mean +/- s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF &kgr; B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.  (+info)