Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. (1/2758)

Samples of serum, bile, and urine were collected simultaneously from patients with cholestasis of varying aetiology and from patients with cirrhosis; their bile acid composition was determined by gas/liquid chromatography and mass spectrometry. In cholestasis, the patterns in all three body fluids differed consistently and strikingly. In serum, cholic acid was the major bile acid and most bile acids (greater than 93%) were unsulphated, whereas, in urine, chenodeoxycholic was the major bile acid, and the majority of bile acids (greater than 60%) were sulphated. Secondary bile acids were virtually absent in bile, serum, and urine. The total amount of bile acids excreted for 24 hours correlated highly with the concentration of serum bile acids; in patients with complete obstruction, urinary excretion averaged 71-6 mg/24 h. In cirrhotic patients, serum bile acids were less raised, and chenodeoxycholic acid was the predominant acid. In healthy controls, serum bile acids were consistently richer in chenodeoxycholic acid than biliary bile acids, and no bile acids were present in urine. No unusual monohydroxy bile acids were present in patients with primary biliary cirrhosis, but, in several patients, there was a considerable amount of hyocholic acid present in the urinary bile acids. The analyses of individual bile acids in serum and urine did not appear to provide helpful information in the differential diagnosis of cholestasis. Thus, in cholestasis, conjugation of chenodeoxycholic acid with sulphate becomes a major biochemical pathway, urine becomes a major route of bile acid excretion, and abnormal bile acids are formed.  (+info)

Analysis of the effects of food and of digestive secretions on the small intestine of the rat. 1. Mucosal morphology and epithelial replacement. (2/2758)

A modified Roux-en-Y repositioning of rat small intestine was performed so that the proximal segment of bowel (A) received only bile and pancreastic secretions, the second (B) received food direct from the stomach, and these two segments drained into a third (C). Four to five weeks after operation, cell production was assessed by injection of vincristine into operated, sham-operated and unoperated rats, and counts of blocked metaphases were made on isolated microdissected crypts. Villus height, crypt depth, and the number of crypts per villus (crypt/villus ratio) were also measured. Most of segment A showed no significant differences from sham-operated intestine, although the normal proximo-distal gradient of villus height was abolished. At the distal end (near the anastomosis with segments B and C), crypt depth and cell production were increased. The villus height gradient in segment B was also abolished, although crypt depth and cell production were significantly increased, especially at the proximal end. Crypt/villus ratio was also increased. Segment C showed all the characteristics of small bowel promoted to a more proximal position: increased villus height, crypt depth and cell production. Increased crypt/villus ratio was also observed. These results are discussed in terms of the role of food and of digestive secretions in the control of mucosal morphology and epithelial replacement.  (+info)

Progesterone alters biliary flow dynamics. (3/2758)

OBJECTIVE: To test the hypothesis that progesterone alters sphincter of Oddi and gallbladder function and, therefore, bile flow dynamics. SUMMARY BACKGROUND DATA: Although the effects of progesterone on the biliary tract have been implicated in the increased incidence of gallstones among women, the specific effects of prolonged elevation of progesterone levels, such as occurs with contraceptive progesterone implants and during pregnancy, on the sphincter of Oddi and biliary flow dynamics are still incompletely understood. METHODS: Adult female prairie dogs were randomly assigned to receive subcutaneous implants containing either progesterone or inactive pellet matrix only. Hepatic bile partitioning and gallbladder emptying were determined 14 days later using 99mTc-Mebrofenin cholescintigraphy. RESULTS: Significantly less hepatic bile partitioned into the gallbladder in progesterone-treated than in control animals. The gallbladder ejection fraction was significantly reduced from 73+/-6% in controls to 59+/-3% in the progesterone-treated animals. The rate of gallbladder emptying was significantly reduced from 3.6+/-0.3%/minute to 2.9+/-0.1%/minute. CONCLUSIONS: Progesterone administered as subcutaneous implants alters partitioning of hepatic bile between gallbladder and small intestine and, therefore, gallbladder filling. Progesterone also significantly impairs gallbladder emptying in response to cholecystokinin. The effects of progesterone on the sphincter of Oddi and the gallbladder may contribute to the greater prevalence of gallstones and biliary motility disorders among women.  (+info)

A new bile acid conjugate, ciliatocholic acid, from bovine gall bladder bile. (4/2758)

This study was carried out to investigate the occurrence of ciliatocholic acid in bovine gall bladder bile. Ciliatocholic acid was synthesized according to the method described by Bergstrom and Norman for the synthesis of taurocholic acid. Elemental analysis, melting point, and the infrared spectrum of this substance were determined. An isolation procedure for ciliatocholic acid was established by stepwise elution with an HCl-ethanol solvent system using a Dowex-1 anion exchange resin column chromatographic technique. Ciliatocholic acid amounting to 158 mug (as ciliatine) per 100 ml of gall bladder bile was found in the fraction eluted with 0.01 N HCl in 50% ethanol. This coumpound was purified by preparative thin-layer chromatography and confirmed to be ciliatocholic acid from the hydrolytic stability, phosphorus determination, and chromatographic behavior. Thus, bovine gall bladder bile contains a small amount of ciliatocholic acid.  (+info)

An interpretation of the serum alkaline phosphatase isoenzyme patterns in patients with obstructive liver disease. (5/2758)

Earlier studies have identified two main isoenzymes of alkaline phosphatase in the sera of patients with obstructive liver disease. This paper reports on a study of these isoenzymes in specific types of liver disease where the pathology in relation to bile duct obstruction is known. The results have been used to support the theory that in biliary obstruction the increase in serum alkaline phosphatase is in part due to regurgitation of the biliary isoenzymes.  (+info)

Influence of renal failure on intestinal clearance of ciprofloxacin in rats. (6/2758)

Following intravenous doses, ciprofloxacin pharmacokinetics in control and nephrectomized rats were studied. There were no differences between control and nephrectomized rats for area under the concentration-time curve in plasma or biliary clearance. The intestinal clearance of ciprofloxacin was increased in nephrectomized rats. Intestinal elimination seems to compensate partially for the decrease in urinary excretion of ciprofloxacin in nephrectomized rats.  (+info)

Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles. (7/2758)

Because gallstones form so frequently in human bile, pathophysiologically relevant supersaturated model biles are commonly employed to study cholesterol crystal formation. We used cryo-transmission electron microscopy, complemented by polarizing light microscopy, to investigate early stages of cholesterol nucleation in model bile. In the system studied, the proposed microscopic sequence involves the evolution of small unilamellar to multilamellar vesicles to lamellar liquid crystals and finally to cholesterol crystals. Small aliquots of a concentrated (total lipid concentration = 29.2 g/dl) model bile containing 8.5% cholesterol, 22.9% egg yolk lecithin, and 68.6% taurocholate (all mole %) were vitrified at 2 min to 20 days after fourfold dilution to induce supersaturation. Mixed micelles together with a category of vesicles denoted primordial, small unilamellar vesicles of two distinct morphologies (sphere/ellipsoid and cylinder/arachoid), large unilamellar vesicles, multilamellar vesicles, and cholesterol monohydrate crystals were imaged. No evidence of aggregation/fusion of small unilamellar vesicles to form multilamellar vesicles was detected. Low numbers of multilamellar vesicles were present, some of which were sufficiently large to be identified as liquid crystals by polarizing light microscopy. Dimensions, surface areas, and volumes of spherical/ellipsoidal and cylindrical/arachoidal vesicles were quantified. Early stages in the separation of vesicles from micelles, referred to as primordial vesicles, were imaged 23-31 min after dilution. Observed structures such as enlarged micelles in primordial vesicle interiors, segments of bilayer, and faceted edges at primordial vesicle peripheries are probably early stages of small unilamellar vesicle assembly. A decrease in the mean surface area of spherical/ellipsoidal vesicles was correlated with the increased production of cholesterol crystals at 10-20 days after supersaturation by dilution, supporting the role of small unilamellar vesicles as key players in cholesterol nucleation and as cholesterol donors to crystals. This is the first visualization of an intermediate structure that has been temporally linked to the development of small unilamellar vesicles in the separation of vesicles from micelles in a model bile and suggests a time-resolved system for further investigation.  (+info)

Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. (8/2758)

The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.  (+info)