Partial purification and properties of porcine thymus lactosylceramide beta-galactosidase. (1/527)

Porcine thymus lactosylceramide beta-galactosidase was purified by a simple procedure. In the final step of isoelectric focusing the enzyme was separated into two peaks of pI 6.3 (peak I) and 7.0 (peak II), which showed 3,600- and 4,000-fold enhancement of lactosylceramide-hydrolysing activity, respectively. The two peaks had identical mobility on polyacrylamide gel electrophoresis. The apparent molecular weight was 34,000. Neither monosialoganglioside (GM1) nor galactosylceramide was hydrolysed by the purified enzyme fractions. The optimal pH was at 4.6, and sodium taurocholate was essential for the reaction. The apparent Km was 2.3 x 10-5 M. The reaction was stimulated by sodium chloride and linoleic acid, while it was strongly inhibited by Triton X-100 and bovine serum albumin. Galactosylceramide, p-nitrophenyl beta-galactoside, and p-nitrophenol were weak inhibitors. No effects of GM1 and galactose were observed on the hydrolysis of lactosylceramide.  (+info)

Delivery of adenoviral vectors to the prostate for gene therapy. (2/527)

Prostate cancer has become the most frequently occurring cancer and the second leading cause of cancer deaths in men. One novel approach to combat prostate cancer is gene therapy. A replication-deficient recombinant adenoviral vector (AdRSVlacZ) expressing bacterial beta-galactosidase (beta-gal) (lacZ) under the control of the Rous sarcoma virus promoter was used to determine which delivery route was best for the transduction of adenoviral vectors to the prostate. Using a canine model, adenoviral vectors were administered by intravenous, intra-arterial, and intraprostatic (i.p.) injections. After injections, the expression of the lacZ gene was measured in canine prostates as well as in various other organs to determine the distribution of the disseminated adenoviral vector by (a) the percentage of cells expressing lacZ in situ (5-bromo-4-chloro-3-indolyl beta-D-galactoside staining), (b) beta-gal enzymatic activity (colorimetric beta-gal assay), and (c) polymerase chain reaction of genomic DNA using primers specific for the adenoviral genome. An i.p. injection of the adenoviral vector resulted in a greater transduction rate and expression level of lacZ in the prostate than either intravenous or intra-arterial (inferior vesical/prostatic artery) injections. Thus, an i.p. (or intratumoral) injection seems to be the best route to treat local regional prostate cancer by viral-based gene therapy.  (+info)

Lectins as membrane components of mitochondria from Ricinus communis. (3/527)

1. Mitochondria were isolated from developing endosperm of Ricinus communis and were fractionated into outer membrane and inner membrane. The relative purity of the two membrane fractions was determined by marker enzymes. The fractions were also examined by negative-stain electron microscopy. 2. Membrane fractions were sequentially extracted in the following way. (a) Suspension in 0.5M-potassium phosphate, pH7.1; (b)suspension in 0.1M-EDTA (disodium salt)/0.05M-potassium phosphate, pH7.1; (c) sonication in 0.05M-potassium phosphate, pH7.1;(d)sonication in aq. Triton X-100 (0.1%). The membranes were pelleted by centrifugation at 100 000g for 15 min, between each step. Agglutination activity in the extracts was investigated by using trypsin-treated rabbit erythrocytes. 3. The addition of lactose to inner mitochondrial membrane resulted in the solubilization of part of the lectin activity, indicating that the protein was attached to the membrane via its carbohydrate-binding site. Pretreatment of the membranes with lactose before tha usual extraction procedure showed that lactose could extract lectins that normally required more harsh treatment of the membrane for solubilization. 4. Lectins extracted from inner membranes were purified by affinity chromatography on agarose gel. Polyacrylamide-gel electrophoresis of purified samples in sodium dodecyl sulphate indicated that at least part of the lectin present in inner mitochondrial membrane was identical with the R. communis agglutinin of mol.wt. 120 000.  (+info)

Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development. (4/527)

The forkhead type Brain Factor 2 from mouse and chicken help pattern the forebrain, optic vesicle and kidney. We have isolated a Xenopus homolog (Xbf2) and found that during gastrulation it is expressed in the dorsolateral mesoderm, where it helps specify this territory by downregulating BMP-4 and its downstream genes. Indeed, Xbf2 overexpression caused partial axis duplication. Interference with BMP-4 signaling also occurs in isolated animal caps, since Xbf2 induces neural tissue. Within the neurula forebrain, Xbf2 and the related Xbf1 gene are expressed in the contiguous diencephalic and telencephalic territories, respectively, and each gene represses the other. Finally, Xbf2 seems to participate in the control of neural crest migration. Our data suggest that XBF2 interferes with BMP-4 signaling, both in mesoderm and ectoderm.  (+info)

Comparative study of carbohydrate-protein complexes. II. Determination of hydroxylysine and its glycosides in human skin and scar collagens by an improved method. (5/527)

A modification of the existing methods for measuring hydroxylysine, galactosylhydroxylysine, and glucosylgalactosylhydroxylysine is described. The method is based on analysis with an automated amino acid analyzer using a conventional separation system for basic amino acids. The prior removal of acidic and neutral amino acids was necessary. This was achieved by passing an alkaline hydrolysate of collagen through a column of Amberlite CG-120, Type II (H+) and washing the column with 8% aqueous pyridine. A basic fraction containing the hydroxylysine compounds was then recovered from the column by elution with 3 M NH4OH. Model experiments showed that hydroxylysine and its glycosides could be analyzed with an hour and that recoveries exceeded 90%. This method was applied to human tissues to investigate whether the dermal scar is different in collagen composition from normal skin. With the limited number of samples analyzed, the data suggested that long-standing scar tissues reverted to a composition similar to that of normal skin. The composition of hydroxylysine-linked carbohydrate units is also discussed on the basis of the age-related change.  (+info)

Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. (6/527)

Anti-sense oligodeoxynucleotides (ODNs) hold great promise for correcting the biosynthesis of clinically relevant proteins. The potential of ODNs for modulating liver-specific genes might be increased by preventing untimely elimination and by improving the local bioavailability of ODNs in the target tissue. In the present study we have assessed whether the local ODN concentration can be enhanced by the targeted delivery of ODNs through conjugation to a ligand for the parenchymal liver cell-specific asialoglycoprotein receptor. A capped ODN (miscellaneous 20-mer sequence) was derivatized with a ligand with high affinity for this receptor, N2-[N2-(N2,N6-bis{N-[p-(beta-d-galactopyranosyloxy) anilino] thiocarbamyl}-L-lysyl)-N6-(N-{p-[beta-D -galactopyranosyloxy] anilino} thiocarbamyl)-L-lysyl]-N6-[N- (p-{beta-D-galactopyranosyloxy}anilino)thiocarbamyl]-L-lysine (L3G4) (Kd 6.5+/-0.2 nM, mean+/-S.D.). Both the uptake studies in vitro and the confocal laser scan microscopy studies demonstrated that L3G4-ODN was far more efficiently bound to and taken up by parenchymal liver cells than underivatized ODN. Studies in vivo in rats showed that hepatic uptake could be greatly enhanced from 19+/-1% to 77+/-6% of the injected dose after glycoconjugation. Importantly, specific ODN accumulation of ODN into parenchymal liver cells was improved almost 60-fold after derivatization with L3G4, and could be attributed to the asialoglycoprotein receptor. In conclusion, the scavenger receptor-mediated elimination pathway for miscellaneous ODN sequences can be circumvented by direct conjugation to a synthetic tag for the asialoglycoprotein receptor. In this manner a crucial requisite is met towards the application of ODNs in vivo to modulate the biosynthesis of parenchymal liver cell-specific genes such as those for apolipoprotein (a), cholesterol ester transfer protein and viral proteins.  (+info)

Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. (7/527)

Influenza A viruses possess two glycoprotein spikes on the virion surface: hemagglutinin (HA), which binds to oligosaccharides containing terminal sialic acid, and neuraminidase (NA), which removes terminal sialic acid from oligosaccharides. Hence, the interplay between these receptor-binding and receptor-destroying functions assumes major importance in viral replication. In contrast to the well-characterized role of HA in host range restriction of influenza viruses, there is only limited information on the role of NA substrate specificity in viral replication among different animal species. We therefore investigated the substrate specificities of NA for linkages between N-acetyl sialic acid and galactose (NeuAcalpha2-3Gal and NeuAcalpha2-6Gal) and for different molecular species of sialic acids (N-acetyl and N-glycolyl sialic acids) in influenza A viruses isolated from human, avian, and pig hosts. Substrate specificity assays showed that all viruses had similar specificities for NeuAcalpha2-3Gal, while the activities for NeuAcalpha2-6Gal ranged from marginal, as represented by avian and early N2 human viruses, to high (although only one-third the activity for NeuAcalpha2-3Gal), as represented by swine and more recent N2 human viruses. Using site-specific mutagenesis, we identified in the earliest human virus with a detectable increase in NeuAcalpha2-6Gal specificity a change at position 275 (from isoleucine to valine) that enhanced the specificity for this substrate. Valine at position 275 was maintained in all later human viruses as well as swine viruses. A similar examination of N-glycolylneuraminic acid (NeuGc) specificity showed that avian viruses and most human viruses had low to moderate activity for this substrate, with the exception of most human viruses isolated between 1967 and 1969, whose NeuGc specificity was as high as that of swine viruses. The amino acid at position 431 was found to determine the level of NeuGc specificity of NA: lysine conferred high NeuGc specificity, while proline, glutamine, and glutamic acid were associated with lower NeuGc specificity. Both residues 275 and 431 lie close to the enzymatic active site but are not directly involved in the reaction mechanism. This finding suggests that the adaptation of NA to different substrates occurs by a mechanism of amino acid substitutions that subtly alter the conformation of NA in and around the active site to facilitate the binding of different species of sialic acid.  (+info)

Naturally occurring anti-alpha-galactosyl antibodies: relationship to xenoreactive anti-alpha-galactosyl antibodies. (8/527)

Antibodies produced by an individual without a known history of sensitization to the relevant antigen are called "natural" antibodies. Some natural antibodies, called xenoreactive antibodies, react with the cells of foreign species. Most xenoreactive antibodies in humans and higher primates bind to a nonreducing terminal galactose expressed by pigs and other lower mammals. Although human natural antibodies which bind to one or more of a variety of terminal alpha-galactosyl structures have been identified previously, the antigen recognized by anti-alpha-galactosyl antibodies on the cells of foreign species is thought to be exclusively Galalpha1-3Gal. Thus, anti-alpha-galactosyl antibodies which do not react with Galalpha1-3Gal are thought to be nonxenoreactive. Here, we identify natural antibodies in human serum which bind to Galalpha1-6Hexosepyrranosides but not Galalpha1-3Gal, indicating that these antibodies are not xenoreactive. Various lower mammals were found to have natural anti-Galalpha1-2Gal antibodies in their sera, suggesting that at least some anti-Galalpha1-2Gal antibodies might not be xenoreactive and indicating, surprisingly, that anti-alpha-galactosyl antibodies are much more phylogenetically disperse than previously known. Also surprising was the finding that some natural antibodies which bind to Galalpha1-3Gal in vitro do not bind to porcine xenografts. These studies show that naturally occurring anti-alpha-galactosyl antibodies in mammalian serum include antibodies with a greater variety of reactivities than previously thought, only some of which would bind to a porcine xenograft. Further, these studies show that the methods used to detect anti-alpha-galactosyl antibodies of relevance in xenotransplantation must be carefully evaluated to avoid detection of anti-alpha-galactosyl antibodies which would not bind to a porcine organ and which therefore are not involved in xenograft rejection.  (+info)