GAT-3 transporters regulate inhibition in the neocortex. (1/32)

The role of GAT-3 transporters in regulating GABA(A) receptor-mediated inhibition was examined in the rat neocortex using an in vitro slice preparation. Pharmacologically isolated GABA(A) receptor-mediated responses were recorded from layer V neocortical pyramidal cells, and the effects of SNAP-5114, a GAT-3 GABA transporter-selective antagonist, were evaluated. Application of SNAP-5114 resulted in a reversible increase in the amplitude of an evoked GABA(A) response in most cells examined, although no effect on the decay time was observed. Examination of the spontaneous output of inhibitory interneurons revealed a reversible increase in the frequency and amplitude of spontaneous inhibitory synaptic currents as a consequence of GAT-3 inhibition. This effect of GAT-3 inhibition on spontaneous inhibitory events was action potential-dependent because no such increases were observed when SNAP-5114 was applied in the presence of TTX. These results demonstrate that GAT-3 transporters regulate inhibitory interneuron output in the neocortex. The increase in inhibitory interneuron excitability resulting from application of SNAP-5114 suggests that inhibition of GAT-3 transporter function results in a reduction in ambient GABA levels, possibly by a reduction in carrier-mediated GABA release via the GAT-3 transporter.  (+info)

Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. (2/32)

The function of GAT1, the transporter for the inhibitory neurotransmitter GABA, is characterized by expression in Xenopus laevis oocytes and measurements of GABA-induced uptake of [3H]GABA, 22Na+, and 36Cl-, and GABA-evoked currents under voltage-clamp conditions. N-[4,4-Diphenyl-3-butenyl]-nipecotic acid (SKF-89976-A), a specific inhibitor of GAT1, is used in our system as a pharmacological tool. The GABA-evoked current can be decomposed into a transport current, which is coupled to the GABA uptake, and a transmitter-gated current, which is uncoupled from the GABA uptake. The transport current results from a fixed stoichiometry of 1 GABA/2 Na+/1 Cl- transported during each cycle, as determined by radioactive tracer flux measurements. The transmitter-gated current is mediated by an Na+-conductance pathway. As a competitive inhibitor for GABA uptake, SKF-89976-A can separate the two current components. The GABA uptake is blocked with a K(I) value of approximately 7 microM, whereas the uncoupled transmitter-gated current is inhibited with a K(I) value of approximately 0.03 microM. Thus, the results of this study not only identify the transport mode and the channel mode of GAT1 but also raise the possibility of separating these components in a physiological environment.  (+info)

GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. (3/32)

In the adult rat hippocampus, granule cell mossy fibers (MFs) form excitatory glutamatergic synapses with CA3 principal cells and local inhibitory interneurons. However, evidence has been provided that, in young animals and after seizures, the same fibers can release in addition to glutamate GABA. Here we show that, during the first postnatal week, stimulation of granule cells in the dentate gyrus gave rise to monosynaptic GABAA-mediated responses in principal cells and in interneurons. These synapses were indeed made by MFs because they exhibited strong paired-pulse facilitation, high sensitivity to the metabotropic glutamate receptor agonist l-AP-4, and short-term frequency-dependent facilitation. MF responses were potentiated by blocking the plasma membrane GABA transporter GAT-1 with NO-711 or by allosterically modulating GABAA receptors with flurazepam. Chemical stimulation of granule cell dendrites with glutamate induced barrages of GABAA-mediated postsynaptic currents into target neurons. Furthermore, immunocytochemical experiments demonstrated colocalization of vesicular GABA transporter with vesicular glutamate transporter-1 and zinc transporter 3, suggesting that GABA can be taken up and stored in synaptic vesicles of MF terminals. Additional fibers releasing both glutamate and GABA into principal cells and interneurons were recruited by increasing the strength of stimulation. Both the GABAergic and the glutamatergic component of synaptic currents occurred with the same latency and were reversibly abolished by l-AP-4, indicating that they originated from the MFs. GABAergic signaling may play a crucial role in tuning hippocampal network during postnatal development. Low-threshold GABA-releasing fibers may undergo elimination, and this may occur when GABA shifts from the depolarizing to the hyperpolarizing direction.  (+info)

GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal. (4/32)

At the axon terminal of goldfish retinal bipolar cells, GABA(C) receptors have been shown to mediate inhibitory reciprocal synaptic currents. Here, we demonstrate a novel standing GABAergic current mediated exclusively by GABA(C) receptors. Selective inhibition of GAT-1 GABA transporters on amacrine cells increases this tonic current and reveals a specific functional coupling between GAT-1 transporters and GABA(C) receptors. We propose that this GABA(C) receptor-mediated standing current serves to regulate synaptic gain by shunting depolarizing potentials that can produce Ca2+-dependent action potentials at the bipolar cell terminal. Furthermore, we find that the amount of GABA(C) receptor-mediated reciprocal feedback between bipolar cell terminals and amacrine cells is greatly increased when GAT-1 transporters are specifically blocked by NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxyl ic acid hydrochloride). The involvement of GAT-1 transporters in regulating this standing (or tonic) GABA(C) current implicates them in a novel role as major determinants of presynaptic excitability.  (+info)

SNAP-25/syntaxin 1A complex functionally modulates neurotransmitter gamma-aminobutyric acid reuptake. (5/32)

Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.  (+info)

In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells. (6/32)

In the adult hippocampus, two different forms of GABA(A) receptor-mediated inhibition have been identified: phasic and tonic. The first is due to the activation of GABA(A) receptors facing the presynaptic releasing sites, whereas the second is due to the activation of receptors localized away from the synapses. Because of their high affinity and low desensitization rate, extrasynaptic receptors are persistently able to sense low concentrations of GABA. Here we show that, early in postnatal life, between postnatal day (P) 2 and P6, CA1 and CA3 pyramidal cells but not stratum radiatum interneurons, express a tonic GABA(A)-mediated conductance. Block of the neuronal GABA transporter GAT-1 slightly enhanced the persistent GABA conductance in principal cells but not in GABAergic interneurons. However, in adulthood, a tonic GABA(A)-mediated conductance could be revealed in stratum radiatum interneurons, indicating that the ability of these cells to sense ambient GABA levels is developmentally regulated. Pharmacological analysis of the tonic conductance in principal cells demonstrated the involvement of beta2/beta 3, alpha 5 and gamma 2 GABA(A) receptor subunits. Removal of the tonic depolarizing action of GABA with picrotoxin, reduced the excitability and the glutamatergic drive of principal cells but did not modify the excitability of stratum radiatum interneurons. The increased cell excitability and synaptic activity following the activation of extrasynaptic GABA(A) receptors by ambient GABA would facilitate the induction of giant depolarizing potentials.  (+info)

Cloning and characterization of a functional human gamma-aminobutyric acid (GABA) transporter, human GAT-2. (7/32)

Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human. The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable and dependent on both Na(+) and Cl(-). Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity at the transporter. Expression analysis by reverse transcription-PCR showed that GAT-2 mRNA is present in human brain, kidney, lung, and testis. The finding of the human GAT-2 demonstrates for the first time that the four plasma membrane GABA transporters identified in several mammalian species are all conserved in human. Furthermore the availability of human GAT-2 enables the use of all human clones of the GABA transporters in drug development programs and functional characterization of novel inhibitors of GABA transport.  (+info)

Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. (8/32)

GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured hippocampal neurons and show that GABAergic transmission is not prevented by four methods widely used to block vesicular release. This nonvesicular neurotransmission was potently blocked by GAT-1 antagonists and was enhanced by agents that increase cytosolic [GABA] or [Na(+)] (which would increase GAT-1 reversal). We conclude that GAT-1 regulates tonic inhibition by clamping ambient [GABA] at a level high enough to activate high-affinity GABA(A) receptors and that transporter-mediated GABA release can contribute to phasic inhibition.  (+info)