Synaptic activation of GABAA receptors induces neuronal uptake of Ca2+ in adult rat hippocampal slices. (1/529)

Synaptically evoked transmembrane movements of Ca2+ in the adult CNS have almost exclusively been attributed to activation of glutamate receptor channels and the consequent triggering of voltage-gated calcium channels (VGCCs). Using microelectrodes for measuring free extracellular Ca2+ ([Ca2+]o) and extracellular space (ECS) volume, we show here for the first time that synaptic stimulation of gamma-aminobutyric acid-A (GABAA) receptors can result in a decrease in [Ca2+]o in adult rat hippocampal slices. High-frequency stimulation (100-200 Hz, 0.4-0.5 s) applied in stratum radiatum close (+info)

A single hydrophobic residue confers barbiturate sensitivity to gamma-aminobutyric acid type C receptor. (2/529)

Barbiturate sensitivity was imparted to the human rho1 homooligomeric gamma-aminobutyric acid (GABA) receptor channel by mutation of a tryptophan residue at position 328 (Trp328), which is located within the third transmembrane domain. Substitutions of Trp328 with a spectrum of amino acids revealed that nearly all hydrophobic residues produced receptor channels that were both directly activated and modulated by pentobarbital with similar sensitivities. Previous studies with ligand-gated ion channels (including GABA) have demonstrated that even conservative amino acid substitution within the agonist-dependent activation domain (N-terminal extracellular domain) can markedly impair agonist sensitivity. Thus, the lack of significant variation in pentobarbital sensitivity among the Trp328 mutants attests to an intrinsic difference between pentobarbital- and the GABA-dependent activation domain. Compared with the heterooligomeric alphabetagamma receptor channel, the mode of modulation for homooligomeric Trp328 mutants by pentobarbital was more dependent on the GABA concentration, yielding potentiation only at low concentrations of GABA (fractions of their respective EC50 values), yet causing inhibition at higher concentrations. Agonist-related studies have also demonstrated that residue 328 plays an important role in agonist-dependent activation, suggesting a functional interconnection between the GABA and pentobarbital activation domains.  (+info)

Regional differences in the inhibition of mouse in vivo [3H]Ro 15-1788 binding reflect selectivity for alpha 1 versus alpha 2 and alpha 3 subunit-containing GABAA receptors. (3/529)

The benzodiazepines flunitrazepam, diazepam, and Ro 15-1788 and the beta-carboline DMCM bind with equivalent affinity to the benzodiazepine binding site of GABAA receptors containing different alpha subunits (i.e., alpha 1, alpha 2, alpha 3, or alpha 5); whereas, the triazolopyridazine CL 218,872 and imidazopyridine zolpidem have higher affinity for alpha 1 subunit-containing GABAA receptors. In the present study, the in vivo binding of [3H]Ro 15-1788 in mouse cerebellum and spinal cord was used to establish the occupancy of the benzodiazepine binding site of GABAA receptors containing primarily alpha 1 and alpha 2/alpha 3 subunits, respectively. Thus, the nonselective compounds flunitrazepam, diazepam, and DMCM all produced a similar inhibition of binding in cerebellum and spinal cord (respective ID50 values of 0.2 to 0.3 mg/kg, 2 mg/kg, and 10 mg/kg i.p.); whereas, the alpha 1 selective compounds CL 218,872 and zolpidem were more potent at inhibiting [3H]Ro 15-1788 binding in the cerebellum (ID50 values 4.5 mg/kg and 10 mg/kg i.p.) compared to the spinal cord (ID50 values 12 mg/kg and > 30 mg/kg i.p.). Thus, the reduction of in vivo f[3H]Ro 15-1788 binding in tissues containing alpha 1 and alpha 2/alpha 3 receptor populations reflects the in vitro affinities of subtype selective compounds and should help to interpret the behavioral profile of such compounds.  (+info)

Adverse events associated with ingestion of gamma-butyrolactone--Minnesota, New Mexico, and Texas, 1998-1999. (4/529)

Products containing gamma-butyrolactone (GBL) are marketed for many claimed purposes, including to induce sleep, release growth hormone, enhance sexual activity and athletic performance, relieve depression, and prolong life. GBL is converted by the body into gamma-hydroxybutyrate (GHB), a drug banned outside of clinical trials approved by the Food and Drug Administration (FDA). Recognized manifestations of GHB toxicity include bradycardia, hypothermia, central nervous system depression, and uncontrolled movements. This report describes seven cases of GBL toxicity involving the product "Revivarant," which is labeled as containing 1.82 g of GBL per fluid ounce, reported from two hospital emergency departments (EDs) in Minnesota during October-December 1998 and summarizes an additional 34 cases of GBL toxicity reported to poison centers in New Mexico and Texas during October 1998-January 1999.  (+info)

Changes in properties and neurosteroid regulation of GABAergic synapses in the supraoptic nucleus during the mammalian female reproductive cycle. (5/529)

1. GABAA receptor-mediated synaptic innervation of oxytocin neurones in the supraoptic nucleus (SON) was analysed in adult female rats going through their first reproductive cycle by recording the spontaneous inhibitory postsynaptic currents (sIPSCs) at six stages of female reproduction. 2. During pregnancy we observed a reduction in the interval between monoquantal sIPSCs. The synaptic current amplitude, current decay and neurosteroid sensitivity of postsynaptic GABAA receptors observed at this stage were not distinguishable from those measured in virgin stage SON. 3. Upon parturition an increase in monoquantal synaptic current decay occurred, whereas potentiation by the progesterone metabolite allopregnanolone (3alpha-OH-DHP) was suppressed. 4. Throughout a substantial part of the lactation period the decay of synaptic currents remained attenuated, whilst the potentiation by 3alpha-OH-DHP remained suppressed. 5. Several weeks after the end of lactation sIPSC intervals, their current decay velocity as well as the potentiation by 3alpha-OH-DHP were restored to pre-pregnancy levels, which is indicative of the cyclical nature of synaptic plasticity in the adult SON. 6. Competitive polymerase chain reaction (PCR) analysis showed that virgin animals expressed alpha1 and alpha2 GABAA receptor subunit mRNA at a relative ratio of 2 : 1 compared with beta-actin. After pregnancy both alpha1 and alpha2 subunit mRNA levels were transiently increased, although at a relative ratio of 1 : 4, in line with the hypothesis that alpha2 plays a large role in postsynaptic receptor functioning. During post-lactation both alpha subunits were downregulated. 7. We propose that synaptic remodelling in the SON during pregnancy includes changes in the putative number of GABA release sites per neurone. At parturition, and during the two consecutive weeks of lactation, a subtype of postsynaptic GABAA receptors was observed, distinct from the one being expressed before and during pregnancy. Synaptic current densities, calculated in order to compare the impact of synaptic inhibition, showed that, in particular, the differences in 3alpha-OH-DHP potentiation of these two distinct GABAA receptor subtypes produce robust shifts in the impact of synaptic inhibition of oxytocin neurones at the different stages of female reproduction.  (+info)

The effects of clonazepam on quality of life and work productivity in panic disorder. (6/529)

Although panic disorder has been associated with impaired quality of life (QOL) and financial dependence, no prior study has examined whether a clinical intervention will improve these outcomes. This study examines the effects of clinically titrated doses of clonazepam versus placebo on QOL and work productivity (WP) in patients with panic disorder. QOL and WP were measured in conjunction with a randomized, double-blind, placebo-controlled trial. The Medical Outcomes Study 36-Item Short Form Health Survey (SF-36) and Work Productivity and Impairment questionnaire were used to assess QOL and WP, respectively. Baseline assessments were obtained before randomizing patients to receive clinically titrated doses of clonazepam or placebo. Follow-up assessments were obtained after 6 weeks of therapy with the test drug or at premature termination from the study. Improvement on the SF-36 Mental Health Component Summary scale was more than twice as great with clonazepam than with placebo (P = 0.03). Clonazepam patients improved (P < 0.05) on all five measures of mental health-related QOL, and both measures of physical health-related QOL, and both measures of WP. Placebo patients improved on three of five measures of mental health-related QOL, but on no other measures. Patients with marked improvements on clinical measures of panic disorder severity, especially avoidance and fear of the main phobia, showed the greatest gains on the SF-36 Mental Health Component Summary scale. Clinically titrated doses of clonazepam significantly improved mental health-related QOL and WP in panic disorder patients. Lesser improvements were obtained with placebo.  (+info)

Functional GABAA receptor heterogeneity of acutely dissociated hippocampal CA1 pyramidal cells. (7/529)

CA1 pyramidal cells were voltage clamped, and GABA was applied to individual cells with a modified U-tube, rapid drug application system. With Vh = -50 mV, inward currents elicited by 10 microM GABA were inhibited by GABAA receptor (GABAR) antagonists and were baclofen insensitive, suggesting that GABA actions on isolated CA1 pyramidal cells were GABAR mediated. GABA concentration-response curves averaged from all cells were fitted best with a two-site equation, indicating the presence of at least two GABA binding sites, a higher-affinity site (EC50-1 = 11.0 microM) and a lower-affinity site (EC50-2 = 334.2 microM), on two or more populations of cells. The effects of GABAR allosteric modulators on peak concentration-dependent GABAR currents were complex and included monophasic (loreclezole) or multiphasic (diazepam) enhancement, mixed enhancement/inhibition (DMCM, zolpidem) or multiphasic inhibition (zinc). Monophasic (70% of cells) or biphasic (30% of cells) enhancement of GABAR currents by diazepam suggested three different sites on GABARs (EC50-1 =1.8 nM; EC50-2 = 75.8 nM; EC50-3 = 275.9 nM) revealing GABAR heterogeneity. The imidazopyridine zolpidem enhanced GABAR currents in 70% of cells with an EC50 = 222.5 nM, suggesting a predominance of moderate affinity alpha2 (or alpha3-) subtype-containing BZ Type IIA receptors. A small fraction of cells (10%) had a high affinity for zolpidem, something that is suggestive of alpha1 subtype-containing BZ Type I receptors. The remaining 30% of cells were insensitive to or inhibited by zolpidem, suggesting the presence of alpha5 subtype-containing BZ Type IIB receptors. Whether BZ Type I and Type II receptors coexist could not be determined. The beta-carboline methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) inhibited GABAR currents in all cells at midnanomolar concentrations, but in addition, potentiated GABAR currents in some cells at low nanomolar concentrations, characterizing two groups of cells, the latter likely due to functional assembly of alpha5betaxgamma2GABARs. In all cells, GABAR currents were moderately sensitive (EC50 = 9 microM) to loreclezole, consistent with a relatively greater beta3 subtype, than beta1 subtype, subunit mRNA expression. Two populations of cells were identified based on their sensitivities to zinc(IC50 = 28 and 182 microM), suggesting the presence of at least two GABAR isoforms including alpha5beta3gamma2 GABARs. Consistent with the heterogeneity of expression of GABAR subunit mRNA and protein in the hippocampus and based on their differential responses to GABA and to allosteric modulators, distinct populations of CA1 pyramidal cells likely express multiple, functional GABAR isoforms.  (+info)

Acetazolamide and amiloride inhibit pentobarbital-induced facilitation of nocifensive reflexes. (8/529)

BACKGROUND: Neuronal excitation may result from stimulation of gamma-aminobutyric acid A (GABA(A)) receptors that prolong the channel opening, depolarizing the postsynaptic membrane. Drugs such as acetazolamide or amiloride can block GABA depolarization. Barbiturates facilitate nociceptive reflexes and also prolong the GABA(A) channel open-time. To evaluate the possible mechanism, the authors studied the impact of acetazolamide and amiloride on pentobarbital-induced nocifensive reflex facilitation. Because nitric oxide (NO) is a mediator of reflex facilitation, the authors evaluated the effects of NO synthase inhibition. METHODS: Nocifensive reflex thresholds were quantified with the hind paw withdrawal latency from radiant heat (HPW latency) in the rat. Nocifensive reflexes were facilitated with intraperitoneal injection of pentobarbital (30 mg/kg). The authors tested the roles of GABA-mediated depolarization and NO in reflex facilitation by pretreatment with acetazolamide and amiloride and inhibition of NO synthase with L-NAME and 7-NI, respectively. Sedative effects of pentobarbital were evaluated with the righting reflex, the response to vibrissal stimulation, and plasma drug concentrations. RESULTS: Pentobarbital decreased the hind paw withdrawal latency from 11.2+/-1 to 8.3+/-1 s (P < 0.001). Pretreatment with each of the four test drugs limited the reduction in reflex facilitation after pentobarbital to 1.3 s or less, similar to the reduction seen after saline injection, without altering sedation. L-NAME increased plasma pentobarbital concentrations by 10% without changing the concentration associated with return of responsiveness. CONCLUSIONS: Pentobarbital-induced nocifensive reflex facilitation was inhibited by all four tested drugs without evidence of increased sedation. The results are consistent with a role for GABA(A) receptor-mediated depolarization in barbiturate-induced hyper-reflexia.  (+info)