4D treatment planning for scanned ion beams. (1/111)

At Gesellschaft fur Schwerionenforschung (GSI) more than 330 patients have been treated with scanned carbon ion beams in a pilot project. To date, only stationary tumors have been treated. In the presence of motion, scanned ion beam therapy is not yet possible because of interplay effects between scanned beam and target motion which can cause severe mis-dosage. We have started a project to treat tumors that are subject to respiratory motion. A prototype beam application system for target tracking with the scanned pencil beam has been developed and commissioned. To facilitate treatment planning for tumors that are subject to organ motion, we have extended our standard treatment planning system TRiP to full 4D functionality. The 4D version of TRiP allows to calculate dose distributions in the presence of motion. Furthermore, for motion mitigation techniques tracking, gating, rescanning, and internal margins optimization of treatment parameters has been implemented. 4D calculations are based on 4D computed tomography data, deformable registration maps, organ motion traces, and beam scanning parameters.We describe the methods of our 4D treatment planning approach and demonstrate functionality of the system for phantom as well as patient data.  (+info)

A study on the influence of breathing phases in intensity-modulated radiotherapy of lung tumours using four-dimensional CT. (2/111)

 (+info)

Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. (3/111)

 (+info)

Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT. (4/111)

PURPOSE: Kilovoltage cone-beam computed tomography (CBCT) is widely used in image-guided radiation therapy for exact patient positioning prior to the treatment. However, producing time series of volumetric images (4D CBCT) of moving anatomical structures remains challenging. The presented work introduces a novel method, combining high temporal resolution inside anatomical regions with strong motion and image quality improvement in regions with little motion. METHODS: In the proposed method, the projections are divided into regions that are subject to motion and regions at rest. The latter ones will be shared among phase bins, leading thus to an overall reduction in artifacts and noise. An algorithm based on the concept of optical flow was developed to analyze motion-induced changes between projections. The technique was optimized to distinguish patient motion and motion deriving from gantry rotation. The effectiveness of the method is shown in numerical simulations and patient data. RESULTS: The images reconstructed from the presented method yield an almost the same temporal resolution in the moving volume segments as a conventional phase-correlated reconstruction, while reducing the noise in the motionless regions down to the level of a standard reconstruction without phase correlation. The proposed simple motion segmentation scheme is yet limited to rotation speeds of less than 3 degrees/s. CONCLUSIONS: The method reduces the noise in the reconstruction and increases the image quality. More data are introduced for each phase-correlated reconstruction, and therefore the applied dose is used more efficiently.  (+info)

Tradeoffs for assuming rigid target motion in Mlc-based real time target tracking radiotherapy: a dosimetric and radiobiological analysis. (5/111)

We report on our assessment of two types of real time target tracking modalities for lung cancer radiotherapy namely (1) single phase propagation (SPP) where motion compensation assumes a rigid target and (2) multi-phase propagation (MPP) where motion compensation considers a deformable target. In a retrospective study involving 4DCT volumes from six (n=6) previously treated lung cancer patients, four-dimensional treatment plans representative of the delivery scenarios were generated per modality and the corresponding dose distributions were derived. The modalities were then evaluated (a) Dosimetrically for target coverage adequacy and normal tissue sparing by computing the mean GTV dose, relative conformity gradient index (CGI), mean lung dose (MLD) and lung V(2)0; (b) Radiobiologically by calculating the biological effective uniform dose (D) for the target and organs at risk (OAR) and the complication free tumor control probability (P(+)). As a reference for the comparative study, we included a 4D Static modality, which was a conventional approach to account for organ motion and involved the use of individualized motion margins. With reference to the 4D Static modality, the average percent decrease in lung V(20) and MLD were respectively (13.1-/+6.9) % and (11.4-/+ 5.6)% for the MPP modality, whereas for the SPP modality they were (9.4-/+6.2) % and (7.2-/+4.7) %. On the other hand, the CGI was observed to improve by 15.3-/+13.2 and 9.6-/+10.0 points for the MPP and SPP modalities, respectively while the mean GTV dose agreed to better than 3% difference across all the modalities. A similar trend was observed in the radiobiological analysis where the P(+) improved on average by (6.7-/+4.9) % and (4.1-/+3.6) % for the MPP and SPP modalities, respectively while the D computed for the OAR decreased on average by (6.2-/+3.6) % and (3.8-/+3.5) % for the MPP and SPP tracking modalities, respectively. The D calculated for the GTV for all the modalities was in agreement to better than 2% difference. In general, respiratory motion induces target displacement and deformation and therefore the complex MPP real time target tracking modality is the preferred. On the other hand, the SPP approach affords simplicity in implementation at the expense of failing to account for target deformation. Radiobiological and dosimetric analyses enabled us to investigate the consequences of failing to compensate for deformation and assess the impact if any on the clinical outcome. While it is not possible to draw any general conclusions on a small patient cohort, our study suggests that the two tracking modalities can lead to comparable clinical outcomes and as expected are advantageous when compared with the static conventional modality.  (+info)

Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step. (6/111)

 (+info)

On correlated sources of uncertainty in four dimensional computed tomography data sets. (7/111)

The purpose of this work is to estimate the degree of uncertainty inherent to a given four dimensional computed tomography (4D-CT) imaging modality and to test for interaction of the investigated factors (i.e., object displacement, velocity, and the period of motion) when determining the object motion coordinates, motion envelope, and the confomality in which it can be defined within a time based data series. A motion phantom consisting of four glass spheres imbedded in low density foam on a one dimensional moving platform was used to investigate the interaction of uncertainty factors in motion trajectory that could be used in comparison of trajectory definition, motion envelope definition and conformality in an optimal 4D-CT imaging environment. The motion platform allowed for a highly defined motion trajectory that could be as the ground truth in the comparison with observed motion in 4D-CT data sets. 4D-CT data sets were acquired for 9 different motion patterns. Multifactor analysis of variance (ANOVA) was performed where the factors considered were the phantom maximum velocity, object volume, and the image intensity used to delineate the high density objects. No statistical significance was found for three factor interaction for definition of the motion trajectory, motion envelope, or Dice Similarity Coefficient (DSC) conformality. Two factor interactions were found to be statistically significant for the DSC for the interactions of 1) object volume and the HU threshold used for delineation and 2) the object velocity and object volume. Moreover, a statistically significant single factor direct proportionality was observed between the maximum velocity and the mean tracking error. In this work multiple factors impacting on the uncertainty in 4D data sets have been considered and some statistically significant two-factor interactions have been identified. Therefore, the detailed evaluation of errors and uncertainties in 4D imaging modalities is recommended in order to assess the clinical implications of interaction among the various uncertainty factors.  (+info)

Innovative image-guided CyberKnife stereotactic radiotherapy for bladder cancer. (8/111)

 (+info)